
Empirical Exploitation of Live Virtual Machine Migration

Jon Oberheide, Evan Cooke, Farnam Jahanian
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor, MI 48109
{jonojono, emcooke, farnam}@umich.edu

Abstract
As virtualization continues to become increasingly

popular in enterprise and organizational networks, oper-
ators and administrators are turning to live migration of
virtual machines for the purpose of workload balancing
and management. However, the security of live virtual
machine migration has yet to be analyzed. This paper
looks at this poorly explored area and attempts to em-
pirically demonstrate the importance of securing the mi-
gration process. We begin by defining and investigat-
ing three classes of threats to virtual machine migration:
control plane, data plane, and migration module threats.
We then show how a malicious party using these attack
strategies can exploit the latest versions of the popular
Xen and VMware virtual machine monitors and present
a tool to automate the manipulation of a guest operating
system’s memory during a live virtual machine migra-
tion. Using this experience, we discuss strategies to ad-
dress the deficiencies in virtualization software and se-
cure the live migration process.

1 Introduction

Recent advances in virtualization have made virtual ma-
chines an increasingly important research and opera-
tional area. Successful commercial ventures including
VMware, XenSource, and Parallels have accelerated the
adoption of virtualization software in many organiza-
tions. According to a recent IDC report [10], the num-
ber of virtualized servers will rise at a compound annual
growth rate of over 40% from 2005-2010.

Live migration of virtual machines (VMs), the process
of transitioning a VM from one virtual machine mon-
itor (VMM) to another without halting the guest oper-
ating system, often between distinct physical machines,
has opened new opportunities in computing [5]. Imple-
mented by several existing virtualization products, live
migration can aid in aspects such as high-availability ser-

vices, transparent mobility, consolidated management,
and workload balancing [7, 13].

While virtualization and live migration enable impor-
tant new functionality, the combination introduces novel
security challenges. A virtual machine monitor that in-
corporates a vulnerable implementation of live migration
functionality may expose both the guest and host operat-
ing system to attack and result in a compromise of in-
tegrity.

Given the large and increasing market for virtualiza-
tion technology, a comprehensive understanding of vir-
tual machine migration security is essential. However,
the security of virtual machine migration has yet to be
analyzed. This paper presents a detailed investigation of
the problem and explores three classes of threats to the
migration process.

1. Control Plane: The communication mechanisms
employed by the VMM to initiate and manage live
VM migrations must be authenticated and resistant
to tampering. An attacker may be able to manipu-
late the control plane of a VMM to influence live
VM migrations and gain control of a guest OS.

2. Data Plane: The data plane across which VM
migrations occur must be secured and protected
against snooping and tampering of guest OS state.
Passive attacks against the data plane may result in
leakage of sensitive information from the guest OS,
while active attacks may result in a complete com-
promise of the guest OS.

3. Migration Module: The VMM component that im-
plements migration functionality must be resilient
against attacks. If an attacker is able to subvert the
VMM using vulnerabilities in the migration mod-
ule, the attacker may gain complete control over
both the VMM and any guest OSes.

This paper explores attacks against live virtual ma-
chine migration in the context of these three threats. We

1

Host VMM A

VM Instance

Host VMM B

 VM Instance

Man-in-the-middle
Mallory

Can modify arbitrary VM
OS/application state

Network

unencrypted

Host A
migrates VM

to Host B

Figure 1: An example of a man-in-the-middle attack against a live VM migration.

present several practical attacks against the migration
functionality of the latest versions1 of the Xen [1] and
VMware [12] virtualization products and develop a tool
to automate the manipulation of a guest virtual machine’s
memory during live migration. Using this experience,
we discuss strategies to address the deficiencies in virtu-
alization software and secure the live migration process.

2 Background

Virtual machines and virtualization technology provide
numerous technical and cost advantages [4]. However,
the use of virtualization also introduces a novel set of se-
curity challenges [8]. In particular, there are novel con-
cerns associated with virtual environments such as se-
curing large numbers of virtual machines, securing a di-
verse range of operating systems and applications across
virtual images, and securing mobile virtual machines
that may move between different physical hosts and net-
works.

There are many ways in which a virtual machine can
be moved from one VMM to another. Since virtual sys-
tems are typically stored as regular files on disk, the files
associated with a halted system can be copied to another
VMM using a network or using portable storage devices
such as USB drives. In addition to the migration of halted
virtual systems, many popular VMMs support live mi-
gration, the process of transitioning a VM from one vir-
tual machine monitor to another without halting the guest
operating system.

While various virtual machine monitors have different
wire protocols for live migration, the underlying algo-
rithms are similar. Live migration techniques [5, 9, 17]
usually begin by copying memory pages of the VM
across the network from the source VMM to the desti-
nation while the VM continues to run within the source
VMM. This process continues as pages are dirtied by
the VM. When the source VMM reaches a threshold

1At the time of writing, the latest version of Xen is 3.1.0 and the
latest version of VMware is Virtual Infrastructure 3.

and deems that no additional significant progress is be-
ing made in the transferring of dirty pages, it will halt
the VM, send the remaining memory pages, and sig-
nal the destination VMM to resume the execution of the
VM. The point at which the VMM decides to halt the
source VM and copy the remaining pages is usually an
implementation-specific heuristic that attempts to bal-
ance and minimize both the duration of migration and
the downtime of the migrating VM. Other variations in-
clude the destination VMM resuming the VM early and
requesting pages from the source VMM on-demand [14].

While one might assume that networks across which
VM images are migrated are secure, this is not an en-
tirely safe assumption anymore. As live VM migra-
tion becomes more common in many organizations, it
is likely that the migration transit path may span multi-
ple commodity networks and significant geographic dis-
tances. Indeed, virtual machines have been successfully
migrated across continents with application downtimes
as low as 1 to 2 seconds [15]. In addition, a compromised
system inside a network employing live migrations can
facilitate untrusted access to migrating VM images. The
ability to view or modify data associated with live mi-
grations or influence the migration services on source
and destination VMMs raises several important security
questions [11]. In the next section we elaborate on the
some of these threats.

3 Migration Attack Classes

In this section, we introduce three classes of threats to
live virtual machine migration and describe several at-
tacks applicable to each.

3.1 Control Plane
The communication mechanisms employed by the VMM
to initiate and manage live virtual machine migrations
must be authenticated and resistant to tampering. In ad-
dition, the protocols used in the control plane must be
protected against spoofing and replay attacks. A lack of

2

proper access control may allow an attacker to arbitrarily
initiate VM migrations.

• Incoming Migration Control: By initiating unau-
thorized incoming migrations, an attacker may
cause guest VMs to be live migrated to the at-
tacker’s machine and gain full control over guest
VMs.

• Outgoing Migration Control: Similarly, by initi-
ating outgoing migrations, an attacker may migrate
a large number of guest VMs to a legitimate victim
VMM, overloading it and causing disruptions or a
denial of service.

• False Resource Advertising: In an environment
where live migrations are initiated automatically to
distribute load across a number of servers, an at-
tacker may be able to falsely advertise available re-
sources via the control plane. By pretending to have
a large number of spare CPU cycles, the attacker
may be able to influence the control plane to mi-
grate a VM to a compromised VMM.

As most existing VM products rely on manual inter-
vention to initiate a migration, their access control mech-
anisms for the control plane are simplistic. For example,
Xen employs a whitelist of host addresses allowed to per-
form migrations. However, as automatic migrations for
load-balancing between many machines become more
common, potentially across multiple administrative do-
mains and between unpredictable host addresses, mech-
anisms for policing the control plane must be introduced
and maintained.

3.2 Data Plane
The data plane across which VM migrations occur must
also be secured and protected against snooping and tam-
pering in order to protect the VM’s state. An attacker
may be able to logically position himself in the migration
transit path using a number of techniques such as ARP
spoofing, DNS poisoning, and route hijacking. With
such a position, an attacker can conduct a man-in-the-
middle attack as illustrated in Figure 1.

• Passive Snooping: Passive attacks against the data
plane may result in leakage of sensitive information.
By monitoring the migration transit path and asso-
ciated network stream, an attacker can extract infor-
mation from the memory of the migrating VM such
as passwords, keys, application data, and other pro-
tected resources.

• Active Manipulation: One of the most severe at-
tacks, an inline attacker may manipulate the mem-
ory of a VM as it is migrated across the network.

Such a man-in-the-middle attack may result in a
complete and covert compromise of the guest OS.

Even if proper encryption and identity management is
used, it still may be possible for an attacker to gain valu-
able information from snooping on a migration stream.
For example, an attacker may be able to uniquely iden-
tify guest VMs based on characteristics of the migration
flow, such as size and duration, and identify the endpoint
VMMs involved in the migration. This information may
aid an attacker in targeting a later attack against a specific
VM or critical infrastructure supporting that VM.

As we will demonstrate in the next section, popular
VMMs deployed in production networks, such as Xen
and VMware, fail to implement even simple data plane
protection to ensure guest OS integrity during live migra-
tion and are vulnerable to attack.

3.3 Migration Module
The VMM component that implements live migration
functionality must also be resilient to attacks. As the mi-
gration module provides a network service over which a
VM is transferred, common software vulnerabilities such
as stack, heap, and integer overflows can be exploited by
a remote attacker to subvert the VMM. Given that VM
migration may not commonly be viewed as a publicly
exposed service, the code of the migration module may
not be scrutinized as thoroughly as other code.

While such attacks are common across all types of
software, special attention should be focused on the se-
curity of a VMM’s migration module. As the VMM
controls all the guest operating systems running within
it, the severity of a VMM vulnerability is much greater
than most normal software. If an attacker is able to com-
promise a VMM through its migration module, the in-
tegrity of any guest VMs running within the VMM, and
any VMs that are migrated to that VMM in the future,
may also become compromised.

As we will discuss in the next section, a brief audit of
Xen’s migration module resulted in multiple vulnerabili-
ties that may compromise the VMM.

4 Implementation and Evaluation

We developed a tool, Xensploit, to perform man-in-the-
middle attacks on the live migration of virtual machines.
The tool operates by manipulating the memory of a VM
as it traverses the network during a live migration. Xen-
sploit is based on the fragroute [6] framework.

While its name is influenced by the first VMM (Xen)
we applied it to, Xensploit is able to manipulate VMware
migrations as well. In the following evaluations, we
demonstrate attacks against the data plane class of both

3

the Xen and VMware VMMs. In addition, we explore
attacks against the migration module of Xen, resulting
from multiple vulnerabilities discovered through an au-
dit of Xen’s migration code.

4.1 Attack Evaluation
4.1.1 Simple Memory Manipulation

To evaluate Xensploit, we performed a simple proof-of-
concept manipulation during the live migration of a Xen
VM. In Xen terminology, a host VMM is known as a
dom0 domain while guest VMs are known as domU do-
mains. Our testbed consisted of three machines: the
source dom0, the destination dom0, and a malicious node
running Xensploit. We started a new guest domU, the
domain to be migrated, within the source dom0. Inside
domU, we executed a test process that simply prints a
“Hello World” string to the terminal each second.

1180795919.260261: Hello World!
1180795920.270992: Hello World!
1180795921.281870: Hello World!

The live migration was then triggered to move domU
from the source dom0 to the destination dom0. As the
memory pages of the running guest OS are transmitted
over the network and pass through the malicious node
running Xensploit, the “Hello World” string is replaced
with our custom value.

1180795921.920290: Xensploited!
1180795922.932574: Xensploited!
1180795923.942636: Xensploited!

In a matter of seconds, the guest OS has been seam-
lessly migrated to the destination dom0. As expected,
Xensploit’s man-in-the-middle attack was successful and
the memory of our test process has been manipulated, re-
sulting in the new string being printed to the terminal of
the guest OS within the destination dom0.

4.1.2 sshd Authentication Manipulation

As a more advanced and practical example of our tool,
we instrumented Xensploit to manipulate the memory
of the Secure Shell daemon (sshd) process of a guest
VM during a live migration. Instead of performing the
attack on Xen again, we switched our deployment to
VMware Virtual Infrastructure [16] to demonstrate Xen-
sploit’s flexibility. Our testbed consisted of four ma-
chines: the source and destination VMMs both running
VMware ESX Server 3.0.1, a management node run-
ning VMware Virtual Infrastructure Client/Server 2.0.1
to manage the VMMs and initiate the migration, and the
malicious node running Xensploit.

Before initiating the migration, we attempted to ssh
to the guest OS running within the source VMM. The
sshd process was configured to only allow authentication
of the type PubkeyAuthentication. As our public key
was not in the root user’s .ssh/authorized keys file,
access was denied.

jonojono@apollo ˜ $ ssh root@testvm1
Permission denied (publickey,keyboard-interactive).

We then initiated the live migration via the Vir-
tual Infrastructure Client and performed the man-in-the-
middle attack using Xensploit. Specifically, the in-
memory object code of the sshd process, originating
from user key allowed2 function in auth2-pubkey.c, is
manipulated during migration to successfully authenti-
cate any incoming ssh logins.

As seen below, after Xensploit’s attack, our attempt
to ssh to the VM succeeds due to the manipulated sshd
process.

jonojono@apollo ˜ $ ssh root@testvm1
Last login: Tue Jun 5 19:25:19 2007 from localhost
testvm1 ˜ #

These examples of manipulating the memory of the
guest OS are just a small subset of the possible attacks
designed to evaluate our Xensploit tool. Much more in-
sidious man-in-the-middle attacks can be performed such
as transparently slipping a rootkit into kernel memory
during the live migration.

4.1.3 Xen Migration Module

While exploring the Xen source code, we dis-
covered multiple issues which fall into the migra-
tion module class of live migration threats. The
vulnerabilities are present in Xen’s VMM migra-
tion routines, specifically the code in xen-3.1.0-
src/tools/libxc/xc domain restore.c, which is used to re-
store an incoming migration to operational state.

As we previously mentioned, exploitable vulnerabili-
ties in a VMM are especially serious as the integrity of
all the currently hosted VMs, and any VMs migrated
to the exploited VMM in the future, may be compro-
mised. One vulnerability exploits an integer signedness
issue resulting in a stack overflow, and yet another in-
volves a malloc() integer overflow resulting in a poten-
tial heap overflow. These two issues may allow a remote
attacker to achieve privileged code execution and com-
pletely compromise the Xen VMM and host machine.

The vulnerabilities have been reported to the Xen-
Source development team and will be resolved in an up-
coming release. Further details regarding the specific
routines affected can be found in Appendix A.

4

5 Discussion

This paper has empirically demonstrated how two of
the most popular and widely deployed VMMs, Xen and
VMware are vulnerable to practical attacks targeting
their live migration functionality. These threats are cause
for concern and require that appropriate solutions be ap-
plied to each class of live migration threats.

In order to support the secure migration of virtual ma-
chines, mutual authentication of the source and destina-
tion VMMs, as well as any management agents, must
be performed to protect the control plane communica-
tions. Flexible access control policies should allow ad-
ministrators to manage migration privileges. The data
plane over which the migration occurs must be secured
against snooping and manipulation of the state of migrat-
ing VMs. Solutions include protecting the transit path
using encryption or using a separate physical or virtual
network to partition and isolate migration traffic from po-
tential threats. While encrypting the migration may seem
like a trivial solution to implement, effectively maintain-
ing a public key infrastructure to ensure mutual authen-
tication will add significant complexity to VM manage-
ment software and may be infeasible for certain deploy-
ments. Finally, robust secure coding methods such as in-
put validation, privilege separation, type-safe languages,
and frequent code audits can help reduce the chance of
compromises of the migration module of a VMM.

Traditionally, a breach in network security results in
a compromise of data integrity. However, when deal-
ing with virtual machine migration of full operating sys-
tems, a breach in the network can result in not only a
compromise of data, but also host integrity. This fun-
damental shift in the threat model of a network may
require re-thinking existing access control and isola-
tion mechanisms. Fine-grained network access con-
trol systems such as SANE [3] may provide sufficiently
flexible policies to address such a threat model. Be-
yond VLANs, complete virtualization of network re-
sources [2] throughout the stack may allow isolation for
secure migrations and may provide an inherent comple-
ment to host virtualization.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 164–177, 2003.

[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
VINI veritas: realistic and controlled network experimentation.

Proceedings of the 2006 conference on Applications, technolo-
gies, architectures, and protocols for computer communications,
pages 3–14, 2006.

[3] M. Casado, T. Garfinkel, A. Akella, M.J. Freedman, D. Boneh,
N. McKeown, and S. Shenker. SANE: A Protection Architec-
ture for Enterprise Networks. Proceedings of the 15th USENIX
Security Symposium, 2006.

[4] P.M. Chen and B.D. Noble. When virtual is better than real. Pro-
ceedings of the 2001 Workshop on Hot Topics in Operating Sys-
tems (HotOS), pages 133–138, 2001.

[5] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, and C. Limpach.
Live Migration of Virtual Machines. Proceedings of the 2nd
USENIX Symposium on Networked Systems Design and Imple-
mentation, 2005.

[6] Dug Song. fragroute. http://www.monkey.org/˜dugsong/
fragroute.

[7] A. Ganguly, A. Agrawal, P.O. Boykin, and R. Figueiredo. WOW:
Self-Organizing Wide Area Overlay Networks of Virtual Work-
stations. Proceedings of the 15th IEEE International Symposium
on High Performance Distributed Computing (HPDC), pages 30–
41, 2006.

[8] T. Garfinkel and M. Rosenblum. When Virtual is Harder than
Real: Security Challenges in Virtual Machine Based Computing
Environments. 10th Workshop on Hot Topics in Operating Sys-
tems, 2005.

[9] J.G. Hansen and E. Jul. Self-migration of operating systems. Pro-
ceedings of the 11th workshop on ACM SIGOPS European work-
shop: beyond the PC, 2004.

[10] IDC. Virtualization and multicore innovations disrupting the
worldwide server market. http://www.idc.com/getdoc.jsp?
containerId=prUS20609907, March 2007.

[11] M. Kozuch, M. Satyanarayanan, I. Res, and PA Pittsburgh. In-
ternet suspend/resume. Mobile Computing Systems and Applica-
tions, 2002. Proceedings Fourth IEEE Workshop on, pages 40–
46, 2002.

[12] M. Nelson, B.H. Lim, and G. Hutchins. Fast Transparent Mi-
gration for Virtual Machines. Proceedings of the USENIX 2005
Annual Technical Conference, 2005.

[13] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Auto-
nomic Live Adaptation of Virtual Computational Environments
in a Multi-Domain Infrastructure. IEEE Int’l Conf. on Autonomic
Computing (ICAC’06), 2006.

[14] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and
M. Rosenblum. Optimizing the Migration of Virtual Computers.
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation, 2002.

[15] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,
J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath, and
P. Yonghui Wang. Seamless live migration of virtual machines
over the MAN/WAN. Future Generation Computer Systems,
22(8):901–907, 2006.

[16] VMware. Virtual infrastructure 3. http://www.vmware.com/
products/vi.

[17] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box
and Gray-box Strategies for Virtual Machine Migration. Pro-
ceedings of the 4th USENIX Symposium on Networked Systems
Design and Implementation, 2007.

5

Appendix A

This appendix delves into the specific details of the vul-
nerabilities discovered in the migration module of Xen.

Vulnerability #1

The first vulnerability occurs early in the migration
restoration code while reading in Xen’s physical-to-
machine (p2m) memory mapping from the wire during
an incoming migration. We begin below at line 437
where the signed integer j is read in from the socket on
which the incoming migration is occurring.

int j, nr_mfns = 0;
...
if (!read_exact(io_fd, &j, sizeof(int)))
{

ERROR("Error when reading batch size");
goto out;

}

After j is read in from the wire, several sanity checks
are performed to ensure its validity. The following
code checks whether j is -1, -2, 0, or greater than
MAX BATCH SIZE and will handle the appropriate excep-
tions if j is one of these specific values.

if (j == -1)
...

if (j == -2)
...

if (j == 0)
...

if (j > MAX_BATCH_SIZE)
...

While j is checked for a maximum bound above
MAX BATCH SIZE to ensure it does not overflow the size
of region pfn type, j is not checked for a negative
value other than -1 and -2. Any other negative value for
j would evade the sanity checks and be passed as j *
sizeof(unsigned long) to read exact().

if (!read_exact(io_fd, region_pfn_type, j*sizeof(unsigned long)))
{

ERROR("Error when reading region pfn types");
goto out;

}

Casting the j * sizeof(unsigned long) argument
into a size t in read exact() will result in a large
and controlled amount of data being read from the
wire into region pfn type overflowing its bound of
MAX BATCH SIZE and allowing an attacker to write arbi-
trary data onto the stack of xc domain restore.

Vulnerability #2

We will walk through the second vulnerability starting
with the affected code of xc domain restore.c around line
906. As seen below, the code begins with a call to the
read exact() which reads 4 bytes into count, an un-
signed integer, from io fd, the socket on which the mi-
gration is occurring.

unsigned int count;
unsigned long *pfntab;
int nr_frees, rc;

if (!read_exact(io_fd, &count, sizeof(count)))
{

ERROR("Error when reading pfn count");
goto out;

}

The attacker-controlled count variable is used to de-
termine how many unsigned long elements should be
allocated for the pfntab structure. The value passed
to malloc() is the result of sizeof(unsigned long)
* count. Unfortunately, when large values of count
are supplied, sizeof(unsigned long) * count will
overflow the maximum bound of a size t and wrap
around, resulting in a very small amount of memory be-
ing allocated for pfntab.

if (!(pfntab = malloc(sizeof(unsigned long) * count)))
{

ERROR("Out of memory");
goto out;

}

So far, an attacker has provided a large count value
and was able to influence a significantly smaller pfntab
allocation than expected. In the next snippet, a similar
integer overflow occurs when calling read exact(), re-
sulting in a small amount of data being read in from the
io fd socket, equal to the size of the allocated pfntab.
This code snippet is only significant in that the attacker
must remember to supply an adequate amount to be read
into pfntab.

if (!read_exact(io_fd, pfntab, sizeof(unsigned long)*count))
{

ERROR("Error when reading pfntab");
goto out;

}

The last code snippet is where the effects of the at-
tack are observed. Since the attacker has full control over
count and pfntab, it follows that he also has control of
i and pfn. Since the pfntab allocation is much smaller
than expected, the count iterations will push pfntab
passed its allocated bounds.

nr_frees = 0;
for (i = 0; i < count; i++)
{

unsigned long pfn = pfntab[i];

if (p2m[pfn] != INVALID_P2M_ENTRY)
{

pfntab[nr_frees++] = p2m[pfn];
p2m[pfn] = INVALID_P2M_ENTRY;

}
}

With sufficient control of the values of p2m, a heap
overflow past the allocated bounds of pfntab may be
possible, resulting in a compromise of the Xen VMM.

6

