

UNIVERSITY OF

MICHIGAN

Hacking the Planet PhD Researcher

Co-Founder & CTO

Talking to you!) - ()

Hello Austin! -

o
o C O
[2:21 PM
- We're Duo! (
- Just opened an Austin office | @
. Also based in A2, CA, UK oevcopmant Sere

trhaynes

- Duo protect orgs against breach
- Securing their users, their devices,

and their access to corporate services

\AuTODESK [y »Dropboxwé}"ka‘”byVAtIassianﬁ'-’zendesk\} slack m yammer?
O Fireeye D paloalio(® QuaLys 7 RAPIDFQ Palantir ARBOR Y @rackspace (<) <=

CYBERARK’
ViaSal xerox @, S‘/ﬂ[]PSYS AlLam ANIXER ’Q‘H olcimn ™ Borowamer €I > Strykerastias
. e S8 ~MA Centura A
A %gg@ Pl g A \ el C
A Il Virginia. cov [RENRENG) AT Xele @5 HARVARD "!'Ml[lm @ Stanford Yale

THOMSON
REUTERS

orbesG I EH4 TRIBUNE JfoR| ;%& Phongp v x A RSONY
‘ ® amazon hul
ks YAHOO)! moz |lla @ Etsy Dinteredt zon NETFLIX hul

‘Eventbrite) yelp-, Q@ Expedia CRBITZ Ry [Rnnn airbnb UBER WYR
organStanleyanC()ln |n-|-u|-|- E Quicken LEGG CARLYLE %

3 @
Financial Group® CNO FINANCIAL Loans BULEN GROUP 4%

\VON H M Y s @ G v AR
4

CARL)
GROU

Duo by the numbers

- 300 employees

- 7500+ customers

- 3X revenue growth the past 3
years

- 98% customer recommendation

- 67 NPS, <4% churn

- Funded by Benchmark, Google
Ventures, Redpoint, True
Ventures

Hiring here in Austin

Engineering
- Software engineers
- Engineering managers

Product

» Product management
» Product marketing

Security

~ App sec, corp sec
Sales, marketing, and
more!

v

v

v

v

duo.com/jobs

115 East 5th Street
Austin, TX 78701

Application security with Python

- Duo is a big Python shop

- Preaching to the choir

- App sec is critical
- One XSS/SQLi = game over

- App sec with Python can be hard

- Not a lot of great tooling/frameworks

—

Philosophy

... testing 'security’ is not the same as testing
functionality’ ... If a door-knob opens a door,
the door works. If a safe-lock opens when you
dial the combination, it does not mean the safe

works.

- John Tan
Cyberspace Underwriters Laboratories

—

More philosophy

... If [all] users spent even a minute a day
reading URLs to avoid phishing, the cost (in
terms of user time) would be two orders of
magnitude greater than all phishing losses.

- Cormac Herley
So Long. And No Thanks for the Externalities

—

http://research.microsoft.com/en-us/um/people/cormac/papers/2009/SoLongAndNoThanks.pdf

Last slide on philosophy, | promise!

It's not enough to give developers the mere opportunity to
write secure code.

We must build tools/frameworks that are secure by
default and cooperate with lossy humans.

|deally, they solve hard problems for us - but at a minimum,
they convert subtle “security” bugs into obvious

“functionality” bugs!
wAl>

S[S]DL[C]

Requirements

Establish Security
Requirements

Core Security
Training

Create Quality
Gates / Bug Bars

Security & Privacy
Risk Assessment

Establish Design
Requirements

Analyze Attack
Surface

Threat
Modeling

Implementation

Use Approved
Tools

Deprecate Unsafe
Functions

Static
Analysis

Verification
Dynamic
Analysis

Fuzz
Testing

Attack Surface
Review

Release
Incident

Response Plan

Final Security
Review

Release
Archive

OWASP top 10 risks

vV v v v v v v v v v

Injection

Broken Authentication and Session Management
Cross Site Scripting

Insecure Direct Object References

Security Misconfiguration

Sensitive Data Exposure

Missing Function Level Access Control
Cross-Site Request Forgery

Using Components with Known Vulnerabilities
Unvalidated Redirects and Forwards

Web framework security checklist

- What do you use for a Python web

framework?
- How does it handle...
- XSS
- XSRF
- SQL injection
» Session fixation
- Secure cookies

- Safe redirects
AVAVA

Ex: XSRF

1. Alice logs into https://mybank.com, and gets back a
session cookie:

200 OK
Set-Cookie: session-id=123-456789; path=/; domain=.mybank.com; Secure; HttpOnly;

2. Alice is tricked into opening https://evilsite.com, whose
JavaScript code sends a POST to mybank.com:

POST /transfer_funds
Cookie: session-id=123-456789...
destination=evil_account_number&amount=100000¤cy=USD

%

XSRF tokens

1. https://mybank.com sends back another cookie with an “xsrf token”:

200 OK
Set-Cookie: session-id=123-456789; path=/; domain=.mybank.com; Secure; HttpOnly;
Set-Cookie: _xsrf=SOMESECRETVALUE; path=/; domain=.mybank.com; Secure; HttpOnly;

2. On any page with a form, https://mybank.com includes the same
token in an input field to be POST-ed:

<input type="hidden' name="'_xsrf' value="SOMESECRETVALUE">

3. https://mybank.com rejects any POST that without an XSRF token

or in which the token doesn’t match the Cookie

XSRF automation

» |deally your web framework does something like:

token = (self.get_argument(self.xsrf_cookie_name, None) or
self.request.headers.get("X-Xsrftoken") or
self.request.headers.get("X-Csrftoken"))
if not token:
raise HTTPError (403, "'_xsrf' argument missing from POST")
if self.xsrf_token != token:
raise HTTPError (403, "XSRF cookie does not match POST argument")

> Turning a security risk into apparent functionality issue
> |If not, can use static analysis on HTML templates

-\ O

Ex: XSS

<html|>
<body>
<h1>Posts</h1>
{% for row in rows %}
<hr>
<p>
{{ row.content }}
</p>
{% end %}
</body>
</html>

SIS

XSS - Threats

- Annoy Users (e.q.

"<script>alert('ni')</script>")
- Steal any data in the DOM
- Defeat XSRF protections

- Phish users’ credentials, even if this wasn’t a
login page

-\ O

<html|>
<body>
<h1>Your Notes</h1>
{% for row in rows %}
<hr>
<p> |
{{ enc_html(row.content) }}
</p>
{% end %]}
</body>
</html>

ESCAPR

-
E

ALLE THEREEINGS

Why not just Auto-Escape?

<html|>
<head>
<title>Hello, World</title>
<script>
var qux = {{ enc_js(qux) }};
</script>
</head>
<body>
<input type="hidden" name="foo" value="{{ enc_attr(foo) }}" />
{{ enc_html(baz) }}
</body>
</head>

SIS

Analyzing templates

- Uses a modified version of our template
engine to render a template with placeholder

values
- With control flow statements no-op’ed out

- Runs an HTML parser on the output to

ensure
- Escaping is _always_used
- Proper escaping is used in the right context (jsw% @

Something like...

<html>
<head>
<title>Hello, World</title>
<script>
var qux = {{ enc_js }};
</script>
</head>
<body>
<input type="hidden" name="foo" value="{{ enc_attr }}" />
{{ enc_html }}
</body>
</head>

SIS

Mitigation: Content-Security-Policy

HTTP Header that will tell the browser from what sources
it's allowed to load (and in the case of scripts, execute)
content.

» Content-Security-Policy: default-src 'self’
load scripts/images/etc. only from the same domain
(and do not run inline scripts or process inline CSS!)
» Content-Security-Policy: default-src 'self’; img-src *
same, except allow loading images from any host

For more, see: http://cspisawesome.com

-\ O

Mitigation: Content-Security-Policy

- Turns security vulnerabilities back into
“ordinary bugs”...

» (... if your users are using supported browsers!)
- Eliminating inline scripts usually requires

some restructuring

- but separating code, data, and presentation is a

good pattern anyway, right? :)

>

"Injection” in general

"[Vulnerabilities like this] occur when data in
grammar A is interpreted as being in grammar
B. n

- Ross Anderson, Security Engineering

SIS

SQL Injection - Review

@defer.inlineCallbacks
def post(self):
ukey = self.get_argument('ukey")
rows = yield self.application.db.runQuery(
"SELECT * FROM users WHERE ukey='%s" % [ukey])
self.render('user.ntml’, rows=rows)

SIS

SQL Injection - Review

Fun ‘ukey’ values:
- foo' OR'"1'="1
- foo';: DROP TABLE users; SELECT 'bar

> L B B |

Automated tools - sglmap

| FROM UUAL
[32839%310) | Y« INLEInved] mp
[2 7:14] [BE pecfocwed 28 Quaries in L apcandsy
= =2ql', 'Dap 'sgl, wap
agl-shelly sslepe * Loam =20
s o want to petrieve the sutput ? [¥/n]
[2 {25] [INTOQ) Zecoking = QAN QUeLy output;
{ 35 11mY0O) vou d41d ptovade the fi=lde 10 YOUr Jquecy
n Atamir
125] 1Inro) ching colusins for takles 'URE2A' an databas= !
fetching nunber of columne for tsvls ‘TIRNS' an Satabase ' 2C0TT
querys SELECT HVL(C T(TP MAME) X FARCHAR (4000) CER(32)
M IICHEQY) | ICHR(62) | |3 0s) | | CHR B3
in C seconds
(COLUMN _NARE AS VARCHAR|AGG0) 1, CHR 11 PROR CARLECT o

TiE COLUMNS VHERE TAELE NAME~CHJ (2S)))CHR(83] | {

VHERE LINXT

ey laveds IT

pen ned 11 gquertes in 1 secands

querys SELECT AST Lconum_lant sgimap needs to know if the provided
&5 L TAH © OLuUMNE

statement can return more than one

entry in order to be able to dump the
output via boolean-based blind SQL
injection

YHERE
ereinved

LINIT=2
HAKE

T

pentarned
query: =KL Ry
A5 LIMIT FROM SYE.ALL TAH COLUMNS
NIt

SURNANE

SO DA e SELECY
pravided bas poce Zhan o
ourput

snteinn’ (Y

2 agloay will paw ir 3ipta d

2re going dlind

[INFD) the quesy ikpack
be able ts retracve

provided reaturn multipis

wan

the

fussy

https://www.youtube.com/watch?v=whS

DF

SKRIAC.

http://www.youtube.com/watch?v=whSDF8KOtK4

Parameterized Queries

@defer.inlineCallbacks
def post(self):
ukey = self.get_argument('ukey")
rows = yield self.application.db.runQuery(
"SELECT * FROM users WHERE ukey=?", [ukey])
self.render('user.ntml’, rows=rows)

Can you see the difference?

SIS

What if, instead...

from sqlalchemy.ext.declarative import declarative base
from sqglalchemy import Column, Integer, String

Base = declarative base()
class User(Base):
__tablename__ ='users'

uid = Column(Integer, primary_key=True)
ukey = Column(String)

def post(self):
ukey = self.get_argument('ukey')
users = self.session.query(User) filter(User.ukey==ukey)
self.render('user.html’, users=users)

IS

Or...

from sqlalchemy.sql import select

def post(self):
s = select([users]).where(users.c.ukey == ukey)
rows = self.conn.execute(s)
self.render('user.html’, rows=rows)

IS

Magic!

- Bad news: Sometimes ORMs have vulns

SQLAIchemy 'limit' and 'offset' Parameters SQL Injection Vulnerabilities

SQLAIchemy is prone to multiple SQL-injection vulnerabilities because it fails to sufficiently sanitize user-supplied data before
using it in an SQL query.

Exploiting these issues could allow an attacker to compromise the application, access or modify data, or exploit latent
vulnerabilities in the underlying database.

- But generally, use an ORM to have to worry
_less_about SQL,|

- You will likely still have raw queries in deep dark

corners 9@@

S[S]DL[C]

Requirements

Establish Security
Requirements

Core Security
Training

Create Quality
Gates / Bug Bars

Security & Privacy
Risk Assessment

Establish Design
Requirements

Analyze Attack
Surface

Threat
Modeling

Implementation

Use Approved
Tools

Deprecate Unsafe
Functions

Static
Analysis

Verification
Dynamic
Analysis

Fuzz
Testing

Attack Surface
Review

Release
Incident

Response Plan

Final Security
Review

Release
Archive

Static analysis

> Not all app sec problems can solved by a
framework...

» We're big fans of static analysis
> More flexible to solve unique problems

Static program analysis is the analysis of computer software that is
performed without actually executing programs (analysis performed on
executing programs is known as dynamic analysis). In most cases the
analysis is performed on some version of the source code, and in the
other cases, some form of the object code.

. Basically, analyzing your code...with code!.

Static analysis
- Why?

- Lots of ways to do security engineering
- Code review, testing, QA, attack monitoring, etc

- Automation
- Humans are lossy and make mistakes

- Scale
- Don't let security get in the way of productivity

» Cost

- Much cheaper to catch bugs in dev vs prod %

Static analysis

A

... but Python is dynamic!

This doesn't work in theory, but within some
constraints, it can be useful in practice.

SIS

Static analysis

- Commercial tools
- Powerful, but extremely expensive
- Veracode
- Coverity
- Fortify
- Limited Python capabilities

- Is it hard to roll our own?
- Mostly no, sometimes yes ;-)

Homegrown hacks

Example: make sure that we only ever use Python’s
“SystemRandom” class to generate random values

v1: Basically, grep for instances of:

> ‘random\.\w+’ (other than ‘random.SystemRandom)
> ‘from random import .*" (other than ‘from random
import SystemRandom)

v2: Use the python AST

BAISH

Abstract Syntax Tree

>>> import ast

>>>m = ast.parse("from random import SystemRandom")

>>> ast.dump(m)

"Module(body=[ImportFrom(module="random', names=[alias(name='SystemRandom', asname=None)], level=0)])"
>>> m.body[0].module

‘random’

>>>m2 = ast.parse("self.db.execute('SELECT * FROM users WHERE uname=%s" % (uname))")

>>> ast.dump(m2)

"Module(body=[Expr(value=Call(func=Attribute(value=Attribute(value=Name(id="self', ctx=Load()), attr="db’,
ctx=Load()), attr="execute’, ctx=Load()), args=[BinOp(left=Str(s='SELECT * FROM users WHERE uname=%s:"),
op=Mod(), right=Name(id='uname’, ctx=Load()))], keywords=[], starargs=None,

kwargs=None))])"

BAISH

Checking SystemRandom

class RandomVisitor(ast.NodeVisitor):
def visit_Attribute(self, node):
if (isinstance(node.value, ast. Name) and node.value.id == 'random'
and node.attr |= 'SystemRandom"):
raise BadRandomGenerator(node.lineno)

def visit_ImportFrom(self, node):
if (node.module == random’

and any(alias.name != 'SystemRandom' for alias in node.names)):

raise BadRandomGenerator(node.lineno)

with open(some_python_module, 'r') as fp:
m = ast.parse(fp.read())
RandomVisitor().visit(m)

SIS

Common anti-patterns
- Bad stuff

- Pickle, subprocess/os.system/etc, basically any XML
parsing, etc...
- Any time you ever want to say/enforce:
- “Don’t ever call that module, function, method,
whatever!”

- Hook into your build/testing/Cl framework

O,

AST-based frameworks

- Not much for python

- Most AST framework are linters! Pylint, pyflakes, etc

- Checking for code quality/etc vs security issues

- Bandit Is a great tool though

- Can write easier checks than our SystemRandom

example
- https://qithub.com/openstack/bandit

—

https://github.com/openstack/bandit

Bandit framework

B312 telnetlib
B313 xml_bad_cElementTree
B314 xml_bad_ElementTree
@bandit.checks('Call') B315 xml_bad_expatreader
B316 xml_bad_expatbuilder
B317 xml_bad_sax
if 'unsafe load' in context.call_function_name_qual: B318 xml_bad_minidom
B319 xml_bad_pulldom
B320 xml_bad_etree

def prohibit_unsafe deserialization(context):

return bandit.Issue(

severity=bandit.HIGH, B321 ftplib
confidence=bandit.HIGH, B0 ITPORE-EelnBtl D
o B402 import_ftplib
text="Unsafe deserialization detected." B403 import_pickle
) B404 import_subprocess

B405 1import_xml_etree
B406 import_xml_sax
B407 import_xml_expat
R4A8 imnort xml minidom

BAISH

Beyond ASTs

- Not all badness can be detected via AST

- Ex: SQL injection

- db.execute(query, parameters)

- How do | ensure the query variable does not contain

external attacker-influenced input???
- Python is dynamic!

- More advanced static analysis
- Control flow, data flow, type flow, taint analysis

—

Taint analysis, hugely simplified

1. Parse the code into an Abstract Syntax Tree
2. Build a "program dependence graph”

3. Find a "node" you want to consider, and
backtrack through the graph

Type flow is simple, right?

<str> <int>

T

QJI\J><

A
B
C

BAISH

A bit more more complicated

def foo(x):
return x+1

def bar(y):
return y*2

f =foo

z=1(1)

f=bar

z =1(2)

<int>| [<int>

A pseudo-realistic example

@defer.inlineCallbacks
def login_user(dbconn, user, password):
pwhash = hashlib.sha1(password).hexdigest(); < note: don’t do this, just an toy example
query = "SELECT uid FROM users WHERE uname='%s' AND password='%s" % (user, pwhash)
row = yield dbconn.runQuery(query)
defer.returnValue(row.uid if row else None)

@ (), 'dbconn’; (), ’pass@ :; {'pwhash’; ()i:
7 {'query"; ('pwhash’, 'user’)}

9 {'row"; ('dbconn’, 'query')}

SIS

Real world look more complicated

—\

The SQLIi use case

- SQLi example

- Find db.execute() node and query variable
- Backtrack ancestry of query variable
- Ensure that roots of query var are string/int literals

- It actually works!
- For some values of “works”

- Minimize FNs, escalate FPs
- If tool can’t understand the code, provide

suggestions to the developer on how to restructure

We're not program analysis experts!

- V1. based on an old, unmaintained project
called "pyntch”

- v2:. we contracted logilab (developers of
pylint) to build us a python dataflow / taint

analysis framework based on astroid
- https://www.astroid.org/

- To OSS’ed Real Soon Now™ ..

https://www.astroid.org/

Wrap-up

» Use frameworks and tools that prevent entire classes of
bugs by default

> Either by intentionally mitigating vulnerabilities or simply by
encapsulating dangerous code so you don'’t have to deal with it.
> If you see an anti-pattern, write a script to enforce it!
» Can be quite basic, especially if you pair it with peer code reviews
and consistent coding norms

> Don't forget about the rest of the SDLC!

52

Thanks!
Questions?

@jonoberheide

mailto:jono@duo.com
https://duo.com

