
CTO, Duo Security
jono@duo.com

Jon Oberheide

App Sec
with Python

Austin Python Meetup

Talking to you!
Co-Founder & CTO

PhD ResearcherHacking the Planet

Hello Austin!

▸ We’re Duo!
▸ Just opened an Austin office
▸ Also based in A2, CA, UK

▸ Duo protect orgs against breach
▸ Securing their users, their devices,

and their access to corporate services

3

4

Duo by the numbers

▸ 300 employees
▸ 7500+ customers
▸ 3x revenue growth the past 3

years
▸ 98% customer recommendation
▸ 67 NPS, < 4% churn
▸ Funded by Benchmark, Google

Ventures, Redpoint, True
Ventures 5

Hiring here in Austin
▸ Engineering

▸ Software engineers
▸ Engineering managers

▸ Product
▸ Product management
▸ Product marketing

▸ Security
▸ App sec, corp sec

▸ Sales, marketing, and
more! 6

duo.com/jobs

Application security with Python

▸ Duo is a big Python shop
▸ Preaching to the choir

▸ App sec is critical
▸ One XSS/SQLi = game over

▸ App sec with Python can be hard
▸ Not a lot of great tooling/frameworks

7

... testing 'security' is not the same as testing
'functionality' ... If a door-knob opens a door,
the door works. If a safe-lock opens when you
dial the combination, it does not mean the safe
works.

‐ John Tan
Cyberspace Underwriters Laboratories

Philosophy

More philosophy

... if [all] users spent even a minute a day
reading URLs to avoid phishing, the cost (in
terms of user time) would be two orders of
magnitude greater than all phishing losses.

‐ Cormac Herley
So Long, And No Thanks for the Externalities

http://research.microsoft.com/en-us/um/people/cormac/papers/2009/SoLongAndNoThanks.pdf

Last slide on philosophy, I promise!

It’s not enough to give developers the mere opportunity to
write secure code.

We must build tools/frameworks that are secure by
default and cooperate with lossy humans.

Ideally, they solve hard problems for us - but at a minimum,
they convert subtle “security” bugs into obvious
“functionality” bugs!

S[S]DL[C]

OWASP top 10 risks
▸ Injection
▸ Broken Authentication and Session Management
▸ Cross Site Scripting
▸ Insecure Direct Object References
▸ Security Misconfiguration
▸ Sensitive Data Exposure
▸ Missing Function Level Access Control
▸ Cross-Site Request Forgery
▸ Using Components with Known Vulnerabilities
▸ Unvalidated Redirects and Forwards

Web framework security checklist

▸ What do you use for a Python web
framework?

▸ How does it handle...
▸ XSS
▸ XSRF
▸ SQL injection
▸ Session fixation
▸ Secure cookies
▸ Safe redirects
▸ XXE

13

Ex: XSRF
1. Alice logs into https://mybank.com, and gets back a
session cookie:

200 OK
Set-Cookie: session-id=123-456789; path=/; domain=.mybank.com; Secure; HttpOnly;

2. Alice is tricked into opening https://evilsite.com, whose
JavaScript code sends a POST to mybank.com:

POST /transfer_funds
Cookie: session-id=123-456789...
destination=evil_account_number&amount=100000¤cy=USD

XSRF tokens
1. https://mybank.com sends back another cookie with an “xsrf token”:

200 OK
Set-Cookie: session-id=123-456789; path=/; domain=.mybank.com; Secure; HttpOnly;
Set-Cookie: _xsrf=SOMESECRETVALUE; path=/; domain=.mybank.com; Secure; HttpOnly;

2. On any page with a form, https://mybank.com includes the same
token in an input field to be POST-ed:
…
<input type='hidden' name='_xsrf' value='SOMESECRETVALUE'>
…

3. https://mybank.com rejects any POST that without an XSRF token,
or in which the token doesn’t match the Cookie

XSRF automation
▸ Ideally your web framework does something like:

▸ Turning a security risk into apparent functionality issue
▸ If not, can use static analysis on HTML templates

Ex: XSS
<html>
 <body>
 <h1>Posts</h1>
 {% for row in rows %}
 <hr>
 <p>
 {{ row.content }}
 </p>
 {% end %}
 </body>
</html>

XSS - Threats

▸ Annoy Users (e.g.
"<script>alert('hi')</script>")

▸ Steal any data in the DOM
▸ Defeat XSRF protections
▸ Phish users’ credentials, even if this wasn’t a

login page

<html>
 <body>
 <h1>Your Notes</h1>
 {% for row in rows %}
 <hr>
 <p>
 {{ enc_html(row.content) }}
 </p>
 {% end %}
 </body>
</html>

Why not just Auto-Escape?
<html>
 <head>
 <title>Hello, World</title>
 <script>
 var qux = '{{ enc_js(qux) }}';
 </script>
 </head>
 <body>
 <input type="hidden" name="foo" value="{{ enc_attr(foo) }}" />
 {{ enc_html(baz) }}
 </body>
</head>

Analyzing templates

▸ Uses a modified version of our template
engine to render a template with placeholder
values
▸ With control flow statements no-op’ed out

▸ Runs an HTML parser on the output to
ensure
▸ Escaping is _always_ used
▸ Proper escaping is used in the right context (js vs

html)
▸ Exceptions can be whitelisted

Something like...
<html>
 <head>
 <title>Hello, World</title>
 <script>
 var qux = '{{ enc_js }}';
 </script>
 </head>
 <body>
 <input type="hidden" name="foo" value="{{ enc_attr }}" />
 {{ enc_html }}
 </body>
</head>

Mitigation: Content-Security-Policy
HTTP Header that will tell the browser from what sources
it’s allowed to load (and in the case of scripts, execute)
content.
▸ Content-Security-Policy: default-src 'self'

load scripts/images/etc. only from the same domain
(and do not run inline scripts or process inline CSS!)

▸ Content-Security-Policy: default-src 'self'; img-src *
same, except allow loading images from any host

For more, see: http://cspisawesome.com

Mitigation: Content-Security-Policy

▸ Turns security vulnerabilities back into
“ordinary bugs”…
▸ (… if your users are using supported browsers!)

▸ Eliminating inline scripts usually requires
some restructuring
▸ but separating code, data, and presentation is a

good pattern anyway, right? :)

"Injection" in general

"[Vulnerabilities like this] occur when data in
grammar A is interpreted as being in grammar
B."
- Ross Anderson, Security Engineering

SQL Injection - Review
@defer.inlineCallbacks
def post(self):
 ukey = self.get_argument('ukey')
 rows = yield self.application.db.runQuery(
 "SELECT * FROM users WHERE ukey='%s'" % [ukey])
 self.render('user.html', rows=rows)

SQL Injection - Review

Fun ‘ukey’ values:
▸ foo' OR '1' = '1
▸ foo'; DROP TABLE users; SELECT 'bar
▸ ...

https://www.youtube.com/watch?v=whSDF8KOtK4

Automated tools - sqlmap

28

http://www.youtube.com/watch?v=whSDF8KOtK4

Parameterized Queries
@defer.inlineCallbacks
def post(self):
 ukey = self.get_argument('ukey')
 rows = yield self.application.db.runQuery(
 "SELECT * FROM users WHERE ukey=?", [ukey])
 self.render('user.html', rows=rows)

Can you see the difference?

What if, instead...
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String

Base = declarative_base()
class User(Base):
 __tablename__ = 'users'

 uid = Column(Integer, primary_key=True)
 ukey = Column(String)
...

def post(self):
 ukey = self.get_argument('ukey')
 users = self.session.query(User).filter(User.ukey==ukey)
 self.render('user.html', users=users)

Or...
from sqlalchemy.sql import select
...

def post(self):
 s = select([users]).where(users.c.ukey == ukey)
 rows = self.conn.execute(s)
 self.render('user.html', rows=rows)

Magic!

▸ Bad news: Sometimes ORMs have vulns

▸ But generally, use an ORM to have to worry
less about SQLi
▸ You will likely still have raw queries in deep dark

corners

S[S]DL[C]

Static analysis
▸ Not all app sec problems can solved by a

framework…
▸ We’re big fans of static analysis

▸ More flexible to solve unique problems
Static program analysis is the analysis of computer software that is
performed without actually executing programs (analysis performed on
executing programs is known as dynamic analysis). In most cases the
analysis is performed on some version of the source code, and in the
other cases, some form of the object code.

▸ Basically, analyzing your code...with code! 34

Static analysis
▸ Why?

▸ Lots of ways to do security engineering
▸ Code review, testing, QA, attack monitoring, etc

▸ Automation
▸ Humans are lossy and make mistakes

▸ Scale
▸ Don’t let security get in the way of productivity

▸ Cost
▸ Much cheaper to catch bugs in dev vs prod

35

Static analysis

... but Python is dynamic!

This doesn't work in theory, but within some
constraints, it can be useful in practice.

Static analysis

▸ Commercial tools
▸ Powerful, but extremely expensive
▸ Veracode
▸ Coverity
▸ Fortify
▸ Limited Python capabilities

▸ Is it hard to roll our own?
▸ Mostly no, sometimes yes ;-)

37

Homegrown hacks
Example: make sure that we only ever use Python’s
“SystemRandom” class to generate random values

v1: Basically, grep for instances of:
▸ ‘random\.\w+’ (other than ‘random.SystemRandom)
▸ ‘from random import .*’ (other than ‘from random

import SystemRandom)

v2: Use the python AST

38

Abstract Syntax Tree
>>> import ast
>>> m = ast.parse("from random import SystemRandom")
>>> ast.dump(m)
"Module(body=[ImportFrom(module='random', names=[alias(name='SystemRandom', asname=None)], level=0)])"
>>> m.body[0].module
‘random'

>>> m2 = ast.parse("self.db.execute('SELECT * FROM users WHERE uname=%s' % (uname))")
>>> ast.dump(m2)
"Module(body=[Expr(value=Call(func=Attribute(value=Attribute(value=Name(id='self', ctx=Load()), attr='db',
ctx=Load()), attr='execute', ctx=Load()), args=[BinOp(left=Str(s='SELECT * FROM users WHERE uname=%s'),
op=Mod(), right=Name(id='uname', ctx=Load()))], keywords=[], starargs=None,
kwargs=None))])"

39

Checking SystemRandom
class RandomVisitor(ast.NodeVisitor):
 def visit_Attribute(self, node):
 if (isinstance(node.value, ast.Name) and node.value.id == 'random'
 and node.attr != 'SystemRandom'):
 raise BadRandomGenerator(node.lineno)

 def visit_ImportFrom(self, node):
 if (node.module == 'random'
 and any(alias.name != 'SystemRandom' for alias in node.names)):
 raise BadRandomGenerator(node.lineno)

with open(some_python_module, 'r') as fp:
 m = ast.parse(fp.read())
 RandomVisitor().visit(m)

Common anti-patterns
▸ Bad stuff

▸ Pickle, subprocess/os.system/etc, basically any XML
parsing, etc…

▸ Any time you ever want to say/enforce:
▸ “Don’t ever call that module, function, method,

whatever!”
▸ Hook into your build/testing/CI framework

41

AST-based frameworks

▸ Not much for python
▸ Most AST framework are linters! Pylint, pyflakes, etc
▸ Checking for code quality/etc vs security issues

▸ Bandit is a great tool though
▸ Can write easier checks than our SystemRandom

example
▸ https://github.com/openstack/bandit

42

https://github.com/openstack/bandit

Bandit framework

@bandit.checks('Call')

def prohibit_unsafe_deserialization(context):

 if 'unsafe_load' in context.call_function_name_qual:

 return bandit.Issue(

 severity=bandit.HIGH,

 confidence=bandit.HIGH,

 text="Unsafe deserialization detected."

)

43

Beyond ASTs

▸ Not all badness can be detected via AST
▸ Ex: SQL injection

▸ db.execute(query, parameters)
▸ How do I ensure the query variable does not contain

external attacker-influenced input???
▸ Python is dynamic!

▸ More advanced static analysis
▸ Control flow, data flow, type flow, taint analysis

44

Taint analysis, hugely simplified

1. Parse the code into an Abstract Syntax Tree

2. Build a "program dependence graph"

3. Find a "node" you want to consider, and
backtrack through the graph

Type flow is simple, right?

A = 'xyz'
B = 2
C = a*b

46

A bit more more complicated

def foo(x):
 return x+1
def bar(y):
 return y*2
f = foo
z = f(1)
f = bar
z = f(2)

47

A pseudo-realistic example
@defer.inlineCallbacks

def login_user(dbconn, user, password):

 pwhash = hashlib.sha1(password).hexdigest(); ← note: don’t do this, just an toy example

 query = "SELECT uid FROM users WHERE uname='%s' AND password='%s'" % (user, pwhash)

 row = yield dbconn.runQuery(query)

 defer.returnValue(row.uid if row else None)

Real world look more complicated

The SQLi use case

▸ SQLi example
▸ Find db.execute() node and query variable
▸ Backtrack ancestry of query variable
▸ Ensure that roots of query var are string/int literals

▸ It actually works!
▸ For some values of “works”
▸ Minimize FNs, escalate FPs
▸ If tool can’t understand the code, provide

suggestions to the developer on how to restructure
50

We’re not program analysis experts!

▸ v1: based on an old, unmaintained project
called "pyntch"

▸ v2: we contracted logilab (developers of
pylint) to build us a python dataflow / taint
analysis framework based on astroid
▸ https://www.astroid.org/

▸ To OSS’ed Real Soon Now™...

https://www.astroid.org/

Wrap-up

▸ Use frameworks and tools that prevent entire classes of
bugs by default
▸ Either by intentionally mitigating vulnerabilities or simply by

encapsulating dangerous code so you don’t have to deal with it.
▸ If you see an anti-pattern, write a script to enforce it!

▸ Can be quite basic, especially if you pair it with peer code reviews
and consistent coding norms

▸ Don’t forget about the rest of the SDLC!

52

Thanks!
Questions?

@jonoberheide
jono@duo.com
https://duo.com

mailto:jono@duo.com
https://duo.com

