Flamingo: Visualizing Internet Traffic Data

Networking R&D, Merit Network Inc.
• Introduction: What is Flamingo
• Visualizations
• The Flamingo Tool
 – Combining visualization with controls
• Case Studies
 – Traffic Anomaly
 – Network Scans
 – Worm traffic
 – P2P traffic
 – The Slashdot effect!
Introduction

• Flamingo is a unique software tool that enables 3D Internet traffic data exploration in real-time
• Provides a series of different visualization methods to illustrate different aspects of the data
• Based on information extracted from netflow records
• Includes additional tools/filters to allow people to easily extract “information” from raw netflow data
Introduction: Flamingo Architecture

- Client/Server Architecture
- A single server can support multiple clients
- A single server can act as collector for multiple netflow feeds
- Supports both aggregation as well as non-aggregation mode
Visualization Methods

- Based on Extended Quad-Tree Implementation
- Traffic Volume by src/dst IP prefix
- Traffic Volume by src/dst AS
- Traffic distribution across src/dst ports
- Traffic flows between src/dst IP prefixes
- Traffic flows between src/dst IP/ports
The Basic Quad-Tree
Traffic Volume by Src/Dst IP

• The 2D quad-tree map is used as the base of a visualization cube
• We plot prefixes from a BGP routing table onto the base of the cube, size of prefix determines size of representation on 2D base
• Longest prefix match is used to map netflow IP addresses onto BGP prefixes
• The z-axis/height is used to represent the volume of traffic
• Different color is used for each prefix
Traffic Volume by Src/Dst IP
Traffic Flows by Aggregated Src/Dst IP

- Flows contain source and destination information, which might map to 2 different prefixes, so far we only have the ability to represent a single flow
- Solution: Use 2 inside surfaces of a cube, one for source, one for destination, represent a flow by a line between them
- Thickness of line represents relative traffic volume
Traffic Flows by Aggregated Src/Dst IP
Traffic Flows by Src/Dst IP and Port

• Flows contain source/destination port number information as well
• Solution:
 – Use base of cube to represent prefixes, both source and destination are on the same base
 – The z-axis is used to represent port numbers, source and destination
 – (srcIP, srcPort) >>>>>>>>>>>> ((x1,y1), z1)
 – (dstIP, dstPort) >>>>>>>>>>>> ((x2,y2), z2)
 – Line between these 2 points in 3D space represents a flow from (srcIP, srcPort) to (dstIP, dstPort)
 – Line thickness represents relative volume of traffic
 – Same color used for all flow with same source IP
Traffic Flows by Src/Dst IP and Port

(SrcIP, SrcPort)

(DstIP, DstPort)
Flamingo Visualization Tool
Flamingo Controls

Text Representation of Visualized Information

Slider Bar Controls

Address Range Configuration
Case Study: Traffic Anomaly Sunday- Oct 16, 2005

• Large burst of traffic visible outgoing from 141.213.x.x(x.x.umich.edu)
• Start time roughly – 12PM - End time roughly – 6PM
• Single srcIP/port – few(4) targetIP’s/multiple ports
• UDP flows
• Traffic pattern visible in the normal clutter
• We then proceed to examine the src (141.213.x.0/24) and target prefixes (216.74.128.0/18, 217.199.32.0/19) in more detail in the following sequence of images
Overall Traffic Pattern at Primary Router Sunday, Oct16 2005

Anomaly
Traffic Volume sourced from /24 subnet by individual hosts

Src IP Addresses
141.213.x.0/24

5 million flows
Distribution of Target IP Addresses

Few(4) Specific Target IP’s

Src IP Addresses
141.213.x.0/24

Dst IP Addresses
0/24
32/32

Distribution of flows in terms of src/dst ports/protocol

- One or two Src Ports
- Dst ports Vary 0-65K
Case Study: Worm Traffic/Port 42 Scans

Scan:
Dst: 35/8 Port:42
Src: 219.188.209/24 Port: various
Case Study: /24 Network Scan
ssh scans
ssh scan
Case Study: Slashdot Event Oct 31, 2004

Traffic Volume

Flow Volume

Volume

EECS Webserver

EECS /24 Subnet

Flows/Minute

Ports

IP Address Space

EECSWebserver

EECSWebserver
Zotob Worm Infection
P2P Traffic
Darkspace Traffic Visualization
Conclusion

• The Flamingo Visualization Tool provides users with the ability to easily explore and extract meaning information regarding traffic flows in their network

• More details can be found at:
 – http://flamingo.merit.edu