
b
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The heap sucks
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Heap vs. stack

● Heap:
● Complicated
● Requires skillz
● Bad connotation:

“heap of trash”
● The 1%, elitist,

pro-life, racist

● Stack:
● Easy
● Doesn't
● Good connotation:

“stack of bills”
● Saves kittens from 

burning buildings

Excerpt from “Objective quantitative scientific comparison 
of the heap and stack” by Dr. Jono, PhD from the journal 
of Useless Computer Science:
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Bringing the stack back

● What's left to exploit with the stack?

● Let's exploit stack overflows!

Smashing? Jacking?ROP'ing?



The Stack is Back – Jon Oberheide Slide #5

The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows
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Fake stack overflows

stack

low address

start of stack
high address

end of stack

stack pointer

unused

grows     down

char buf[16];

some bullshit memcpy

return addrNO!
THIS IS A

STACK-BASED
BUFFER OVERFLOW
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Real stack overflows

stack

low address

start of stack
high address

end of stack

stack pointer

grows     down

stack pointer
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Stack overflows

● Stack overflows
● Misuse of terminology
● Jono's definition:

● Types of overflows
● Incremental overflows
● Allocation overflows

Stack pointer decremented beyond the 
intended bounds of the stack's allocated VMA.
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Incremental overflows

start of stack

end of stack

● Incremental 
overflows
● Deep call chains
● Recursion

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

void func() {
    func();
}
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Allocation overflows

● Allocation 
overflows
● Large local 

stack vars
● Dynamic allocations:

VLAs, alloca(3)

start of stack

end of stack

Frame 1

Frame 2

alloca(CRAP_LOAD);

alloca
stack space
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Exploiting stack overflows

● Stack overflows in userspace
● Not uncommon
● Lots of controllable (and uncontrollable) recursion
● Some use of C99 VLAs and alloca(3)

● Exploitable stack overflows
● Exploitable = more than DoS
● Quite rare!
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Trivia #1

Android Phone

1855
FOR0DAY

T-Shirt Phone Number

What is one scenario where a userspace 
stack overflow might be exploitable?
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Large MM vulns
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Stack overlap
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Real-world stack overflows

● Xorg large MM vuln by Rafal @ ITL
● No guard page at end of stack on <= Linux 2.6.36
● Allocate large pixmaps to exhaust address space
● Force a shm allocation adjacent to the stack
● Call recursive function to cause stack/shm overlap
● Write to the shm and therefore the Xorg stack

Not a lot of real-world examples...maybe one?
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Embedded platforms

Limited memory → limited stack → stack overflows
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Remote kernel overflows?

● BSD IPComp kernel stack overflow
● Travis Normandy
● Recursive decompression in IP stack

● Exploitable?
● Ehhhh...
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The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows
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Linux kernel stacks

4k/8k
stack

unused

grows down

low address

high address● Each userspace thread is 
allocated a kernel stack

● Stores stack frames for kernel 
syscalls and other metadata

● Most commonly 8k, some 
distros use 4k

● THREAD_SIZE = 
2*PAGE_SIZE = 
2*4086 = 8192
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Metadata on kernel stack

unused

grows down

thread_info

start of stack

current_thread_info

struct thread_info {
    struct task_struct *task;
    struct exec_domain *exec_domain;
    __u32 flags;
    __u32 status;
    __u32 cpu;
    int preempt_count;
    mm_segment_t addr_limit;
    struct restart_block restart_block;
    void __user *sysenter_return;
#ifdef CONFIG_X86_32
    unsigned long previous_esp;
    __u8 supervisor_stack;
#endif
    int uaccess_err;
};

thread_info struct is at the base of kstack!
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Exploiting stack overflows

start of stack

current_thread_info

If we control an incremental or 
allocation stack overflow in the Linux 
kernel, we can cause our thread's 
kernel stack to collide with the 
thread_info structure.

thread_info
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Targeting thread_info

● What would the overflow collide with?
● uaccess_err

● No security impact, 
but safe to clobber

● restart_block
● A function pointer, BINGO!

● addr_limit
● Define u/k boundary, BONGO!

● preempt_count .. task_struct
● Pretty sensitive members, avoid clobbering

struct restart_block {
    long (*fn)(struct restart_block *);
    union {} /* safe to clobber */
};

access_ok()/__range_not_ok():

Test whether a block of memory 
is a valid user space address.

addr + size > addr_limit.seg
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Controlling the clobber

● Can we control the clobbering value?
● Incremental overflow: tip of the stack, unlikely
● Allocation overflow: VLA values, maybe

● Good news, don't need much control!
● Two categories:

● Value represents a kernel space address
● Value > TASK_SIZE

● Value represents a user space address
● Value < TASK_SIZE
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Clobber → Code Exec

● If value < TASK_SIZE
● Clobber restart_block fptr with userspace value
● mmap privesc payload at that address in userspace
● Trigger fptr via syscall(SYS_restart_syscall); 

● If value > TASK_SIZE
● Clobber addr_limit with a high kernel space value
● You can now pass copy_from_user()/access_ok() 

checks up to that kernel address
● So we can read(2) from a fd and write into kmem
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Vanilla exploitation

● thread_info clobbering technique
● Will work in the common case for Linux kernel stack 

overflows

● Example vuln @ CSAW CTF
● Controlled recursion with userspace value at tip of 

the stack

http://jon.oberheide.org/blog/2011/11/27/csaw-ctf-2011-kernel-exploitation-challenge/

We consider these “vanilla” stack overflows.

http://jon.oberheide.org/blog/2011/11/27/csaw-ctf-2011-kernel-exploitation-challenge/
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Architecture specifics

● x86_64
● Pretty clean, dedicated interrupt stacks

● x86_32
● Interrupt stack shared with process stack
● Less predictability, but more opportunity to 

trigger a stack overflow

● ARM, alpha, others
● restart_block is on end of thread_info :-)
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The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows
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Real world vulnerability

● Two great bugs from Nelson
● CVE-2010-3848
● CVE-2010-3850
● And a bonus bug that will come into play later

● Econet packet family
● Stack overflow in econet_sendmsg()

Let's look at a real-world Linux kernel 
stack overflow vulnerability.
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Vulnerable code

Oh snap! A VLA on the stack with an attacker controlled length!

Hey, we (mostly) control the contents too! Game over, eh?

for (i = 0; i < msg->msg_iovlen; i++) {
...
    iov[i+1].iov_base = base;
    iov[i+1].iov_len = iov_len;
...
}

int econet_sendmsg(struct kiocb *iocb, struct socket 
*sock, struct msghdr *msg, size_t len)
{
...
    struct iovec iov[msg->msg_iovlen+1];
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Attempt #1

● Attempt #1
● Expand VLA to hit thread_info directly
● Overwrite restart_block/addr_limit

with attacker controlled values

● Thwarted!
● Subsequent function calls in sendmsg

will clobber sensitive 
thread_info members

start of stack

end of stack

udp_sendmsg

inet_sendmsg

econet_sendmsg

sock_sendmsg

thread_info

restart_block
addr_limit

VLA

restart_block
addr_limit

restart_block
addr_limit

sock_sendmsg
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Attempt #2

● Attempt #2
● Expand VLA to just above thread_info
● Overwrite using the stack frames of

subsequent calls (sock_sendmsg)

● Semi-thwarted!
● Overwrite value is uncontrolled and a 

kernel space value so 
restart_block is no good

● What about addr_limit?

start of stack

end of stack

udp_sendmsg

inet_sendmsg

econet_sendmsg

sock_sendmsg

thread_info

restart_block
addr_limit

VLA

restart_block
addr_limit

sock_sendmsg
call frames
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Attempt #2 continued

● We can hit addr_limit with a value that 
represents a high kernel space value
● Overwrite of addr_limit occurs in sock_sendmsg call

● You can't be serious...
● addr_limit is being saved/restored before/after the 

sock_sendmsg call, nullifying our overwrite

oldfs = get_fs();
set_fs(KERNEL_DS);
err = sock_sendmsg(udpsock, &udpmsg, size);
set_fs(oldfs);
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Attempt #2 continued

● We could try other subsequent function calls 
besides sock_sendmsg
● Cause error condition, return from econet_sendmsg 

early with a terminating mutex_unlock call. Eg:

● Write offsets of the stack frame don't align
● Pattern: chunks of two 8-byte writes w/kernel value
● Hit restart_block with kernel value (useless) or hit both 

addr_limit (good) and preempt_count (crash)

if (len + 15 > dev->mtu) {
    mutex_unlock(&econet_mutex);
    return -EMSGSIZE;
}
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Attempt #3

● Attempt #3
● Blow past thread_info and with VLA

and “write-back” towards the end of 
the kernel stack

● Overwrite task_struct with an attacker 
controlled address

● Ok, this is just insane...
● Yes, you can make a fake 

task_struct in userspace, 
but not in this century

start of stack

end of stack

udp_sendmsg

inet_sendmsg

econet_sendmsg

sock_sendmsg

VLA

task_struct

write
write
write

abort writes

if (!access_ok(VERIFY_READ,
               base, iov_len)) {
    mutex_unlock(&econet_mutex);
    return -EFAULT;
}
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Need a different approach

● If thread_info is out, what can we do?
● Nothing useful on the stack, but...
● Need some audience help here...

It's clear the thread_info technique is not going to 
work here due to extenuating circumstances
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Trivia #2

Android Phone

1855
FOR0DAY

T-Shirt Phone Number

Any ideas of what to do if the thread_info 
technique isn't going to work?
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Beyond our stack

● A thread's kstack doesn't exist in a vacuum
● Each kstack allocated from the buddy allocator

● Screw intra-stack exploitation, let's talk inter-
stack exploitation

kstack 1 kstack 2 kstack 3

espespesp
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Attacking adjacent kstacks

● Two big questions:
● How do we get two thread kernel stacks allocated 

adjacently?
● How do we sanely modify another thread's stack to 

gain code exec?

In an allocation-based overflow, we can blow past 
the end of our stack and into an adjacent stack!

We sort of did this with 
stackjacking self-discovery!

We sort of did this with 
stackjacking Obergrope!
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Kernel stack disclosures

.

.

.

1) process 
makes syscall 
and leaves 
sensitive data 
on kstack

2) kstack is reused 
on subsequent 
syscall and struct 
overlaps with 
sensitive data

foo.baz

sensitive data

kstack frame

foo.bar

struct foo {
  uint32_t bar;
  uint32_t leak;
  uint32_t baz;
};

syscall() {
  struct foo;
  foo.bar = 1;
  foo.baz = 2;
  copy_to_user(foo);
}

foo.leaksensitive data

3) foo struct is copied to 
userspace, leaking 4 
bytes of kstack through 
uninitialized foo.leak 
member

kstack frame
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Kernel stack self-discovery

● If we can leak an pointer 
to the kstack off the kstack, 
we can calculate the base 
address of the kstack

.

.

.

0xcdef1234

kstack frame

We call this kstack self-discovery

kstack_base = addr & ~(THREAD_SIZE – 1);

kstack_base = 0xcdef1234 & ~(8192 – 1)

kstack_base = 0xcdef0000 0xcdef0000

0xcdef2000

0xcdef1234
0xdeadbeef
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Writing the adjacent kstack

● Getting adjacent kstacks
● Spawn children, have them 

self-discover their kstack address, 
spin until we get two adjacent 
allocations

● Writing the adjacent stack
● Process #2 kstack needs to be in 

a stable predictable state
● Process #1 needs a sufficient landing 

zone to absorb mutex_unlock stack frame

start of stack 1
econet_sendmsg

write

start of stack 2

thread_info

mutex_unlock

VLA
thread_info

write
write
write
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Sleepy syscalls are back

● Process #2 will enter a “sleepy syscall”
● Arbitrary sleeping to avoid dangerous race 

conditions with the overflow write
● While asleep, process #1 will overwrite a return 

address on process #2's kstack

● compat_sys_wait4 looks good
● Hey, same function we used for stackjacking!
● Large unused local stack vars to absorb the 

mutex_unlock stack frame
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Final exploit flow

● Achieve adjacent kstacks

● Process #2 goes to sleep

● Stack overflow in process #1

● Overwrite return address on 
process #2 kernel stack

● Process #2 wakes up

● Process #2 returns to attacker control address

● Privilege escalation payload executed!

start of stack 1
econet_sendmsg

write

start of stack 2

thread_info

compat_sys_wait4

VLA

write

...sleep...

retaddrwrite

mutex_unlock

thread_info
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Demo

DEMO TIME?

http://jon.oberheide.org/files/half-nelson.c

http://jon.oberheide.org/files/half-nelson.c
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The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows
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Trivia #3

Android Phone

1855
FOR0DAY

T-Shirt Phone Number

What is one way to discover potential 
stack overflow vulnerabilities?
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jono discovery method

Ghetto kstack overflow discovery mechanism:

Advanced l33t static analysis: 

Projected to win grugq's #grep2pwn 2012.

egrep -R "^[[:space:]]*(struct |char |
(u)?int(8_t|16_t|32_t|64_t)? |void )

[^=]+\[[a-z]+.*[\+\*]?.*\];" * | 
grep -v sizeof
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pipacs discovery method

The proper way to do it: gcc plugin

Artist's depiction
of “theowl”

13:27 < pipacs> jono btw, i'm sorry to burst your 
infiltrate bubble but the next stackleak plugin will 
fix the alloca problems...

13:28 < pipacs> (and if you want to find all those 
bugs, the same plugin can tell you exactly where 
they occur ;)

pax_check_alloca verifies kstack sanity after alloca calls.

Inserted at compile time by stackleak_check_alloca into 
any functions that use __builtin_alloca.

See tools/gcc/stackleak_plugin.c in latest PaX patch
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Exploiting hardened kernels

● On grsec/PaX kernels, thread_info is no longer stored 
at the base of the kernel stack

● Mitigated the Rosengrope stackjacking method
● So, the standard thread_info overwrite is ineffective

● Yes...
● But RANDKSTACK makes it hard and new STACKLEAK 

plugin makes it near infeasible

Can we use the adjacent process exploitation 
technique against hardened kernels?
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Mitigating exploitation

● Move thread_info off the stack!
● Thwarts vanilla thread_info exploitation technique
● Patches years ago to LKML, rejected by mainline

● Thwarting the adjacent process 
technique is a bit harder
● Something like PaX's RANDKSTACK would make 

things harder
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Wrap-up

● GIVE UP HEAPSTERS!
● Win8 fixed everything, the heap is over

● Stack overflows are exploitable
● At least in the Linux kernel
● How about your favorite OS? Windows/BSD/etc?

● Don't shun “unexploitable” vuln classes
● Other situations? Userspace via browser/js?
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Greetz

● #busticati

● $1$kk1q85Xp$Id.gAcJOg7uelf36VQwJQ/

● ;PpPppPpPpPPPpP
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Q&A

Jon Oberheide
jon@oberheide.org

Duo Security

QUESTIONS?

mailto:jon@oberheide.org
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