
b

The Stack is Back – Jon Oberheide Slide #2

The heap sucks

The Stack is Back – Jon Oberheide Slide #3

Heap vs. stack

● Heap:
● Complicated
● Requires skillz
● Bad connotation:

“heap of trash”
● The 1%, elitist,

pro-life, racist

● Stack:
● Easy
● Doesn't
● Good connotation:

“stack of bills”
● Saves kittens from

burning buildings

Excerpt from “Objective quantitative scientific comparison
of the heap and stack” by Dr. Jono, PhD from the journal
of Useless Computer Science:

The Stack is Back – Jon Oberheide Slide #4

Bringing the stack back

● What's left to exploit with the stack?

● Let's exploit stack overflows!

Smashing? Jacking?ROP'ing?

The Stack is Back – Jon Oberheide Slide #5

The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows

The Stack is Back – Jon Oberheide Slide #6

Fake stack overflows

stack

low address

start of stack
high address

end of stack

stack pointer

unused

grows down

char buf[16];

some bullshit memcpy

return addrNO!
THIS IS A

STACK-BASED
BUFFER OVERFLOW

The Stack is Back – Jon Oberheide Slide #7

Real stack overflows

stack

low address

start of stack
high address

end of stack

stack pointer

grows down

stack pointer

The Stack is Back – Jon Oberheide Slide #8

Stack overflows

● Stack overflows
● Misuse of terminology
● Jono's definition:

● Types of overflows
● Incremental overflows
● Allocation overflows

Stack pointer decremented beyond the
intended bounds of the stack's allocated VMA.

The Stack is Back – Jon Oberheide Slide #9

Incremental overflows

start of stack

end of stack

● Incremental
overflows
● Deep call chains
● Recursion

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

void func() {
 func();
}

The Stack is Back – Jon Oberheide Slide #10

Allocation overflows

● Allocation
overflows
● Large local

stack vars
● Dynamic allocations:

VLAs, alloca(3)

start of stack

end of stack

Frame 1

Frame 2

alloca(CRAP_LOAD);

alloca
stack space

The Stack is Back – Jon Oberheide Slide #11

Exploiting stack overflows

● Stack overflows in userspace
● Not uncommon
● Lots of controllable (and uncontrollable) recursion
● Some use of C99 VLAs and alloca(3)

● Exploitable stack overflows
● Exploitable = more than DoS
● Quite rare!

The Stack is Back – Jon Oberheide Slide #12

Trivia #1

Android Phone

1855
FOR0DAY

T-Shirt Phone Number

What is one scenario where a userspace
stack overflow might be exploitable?

The Stack is Back – Jon Oberheide Slide #13

Large MM vulns

The Stack is Back – Jon Oberheide Slide #14

Stack overlap

The Stack is Back – Jon Oberheide Slide #15

Real-world stack overflows

● Xorg large MM vuln by Rafal @ ITL
● No guard page at end of stack on <= Linux 2.6.36
● Allocate large pixmaps to exhaust address space
● Force a shm allocation adjacent to the stack
● Call recursive function to cause stack/shm overlap
● Write to the shm and therefore the Xorg stack

Not a lot of real-world examples...maybe one?

The Stack is Back – Jon Oberheide Slide #16

Embedded platforms

Limited memory → limited stack → stack overflows

The Stack is Back – Jon Oberheide Slide #17

Remote kernel overflows?

● BSD IPComp kernel stack overflow
● Travis Normandy
● Recursive decompression in IP stack

● Exploitable?
● Ehhhh...

The Stack is Back – Jon Oberheide Slide #18

The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows

The Stack is Back – Jon Oberheide Slide #19

Linux kernel stacks

4k/8k
stack

unused

grows down

low address

high address● Each userspace thread is
allocated a kernel stack

● Stores stack frames for kernel
syscalls and other metadata

● Most commonly 8k, some
distros use 4k

● THREAD_SIZE =
2*PAGE_SIZE =
2*4086 = 8192

The Stack is Back – Jon Oberheide Slide #20

Metadata on kernel stack

unused

grows down

thread_info

start of stack

current_thread_info

struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 void __user *sysenter_return;
#ifdef CONFIG_X86_32
 unsigned long previous_esp;
 __u8 supervisor_stack;
#endif
 int uaccess_err;
};

thread_info struct is at the base of kstack!

The Stack is Back – Jon Oberheide Slide #21

Exploiting stack overflows

start of stack

current_thread_info

If we control an incremental or
allocation stack overflow in the Linux
kernel, we can cause our thread's
kernel stack to collide with the
thread_info structure.

thread_info

The Stack is Back – Jon Oberheide Slide #22

Targeting thread_info

● What would the overflow collide with?
● uaccess_err

● No security impact,
but safe to clobber

● restart_block
● A function pointer, BINGO!

● addr_limit
● Define u/k boundary, BONGO!

● preempt_count .. task_struct
● Pretty sensitive members, avoid clobbering

struct restart_block {
 long (*fn)(struct restart_block *);
 union {} /* safe to clobber */
};

access_ok()/__range_not_ok():

Test whether a block of memory
is a valid user space address.

addr + size > addr_limit.seg

The Stack is Back – Jon Oberheide Slide #23

Controlling the clobber

● Can we control the clobbering value?
● Incremental overflow: tip of the stack, unlikely
● Allocation overflow: VLA values, maybe

● Good news, don't need much control!
● Two categories:

● Value represents a kernel space address
● Value > TASK_SIZE

● Value represents a user space address
● Value < TASK_SIZE

The Stack is Back – Jon Oberheide Slide #24

Clobber → Code Exec

● If value < TASK_SIZE
● Clobber restart_block fptr with userspace value
● mmap privesc payload at that address in userspace
● Trigger fptr via syscall(SYS_restart_syscall);

● If value > TASK_SIZE
● Clobber addr_limit with a high kernel space value
● You can now pass copy_from_user()/access_ok()

checks up to that kernel address
● So we can read(2) from a fd and write into kmem

The Stack is Back – Jon Oberheide Slide #25

Vanilla exploitation

● thread_info clobbering technique
● Will work in the common case for Linux kernel stack

overflows

● Example vuln @ CSAW CTF
● Controlled recursion with userspace value at tip of

the stack

http://jon.oberheide.org/blog/2011/11/27/csaw-ctf-2011-kernel-exploitation-challenge/

We consider these “vanilla” stack overflows.

http://jon.oberheide.org/blog/2011/11/27/csaw-ctf-2011-kernel-exploitation-challenge/

The Stack is Back – Jon Oberheide Slide #26

Architecture specifics

● x86_64
● Pretty clean, dedicated interrupt stacks

● x86_32
● Interrupt stack shared with process stack
● Less predictability, but more opportunity to

trigger a stack overflow

● ARM, alpha, others
● restart_block is on end of thread_info :-)

The Stack is Back – Jon Oberheide Slide #27

The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows

The Stack is Back – Jon Oberheide Slide #28

Real world vulnerability

● Two great bugs from Nelson
● CVE-2010-3848
● CVE-2010-3850
● And a bonus bug that will come into play later

● Econet packet family
● Stack overflow in econet_sendmsg()

Let's look at a real-world Linux kernel
stack overflow vulnerability.

The Stack is Back – Jon Oberheide Slide #29

Vulnerable code

Oh snap! A VLA on the stack with an attacker controlled length!

Hey, we (mostly) control the contents too! Game over, eh?

for (i = 0; i < msg->msg_iovlen; i++) {
...
 iov[i+1].iov_base = base;
 iov[i+1].iov_len = iov_len;
...
}

int econet_sendmsg(struct kiocb *iocb, struct socket
*sock, struct msghdr *msg, size_t len)
{
...
 struct iovec iov[msg->msg_iovlen+1];

The Stack is Back – Jon Oberheide Slide #30

Attempt #1

● Attempt #1
● Expand VLA to hit thread_info directly
● Overwrite restart_block/addr_limit

with attacker controlled values

● Thwarted!
● Subsequent function calls in sendmsg

will clobber sensitive
thread_info members

start of stack

end of stack

udp_sendmsg

inet_sendmsg

econet_sendmsg

sock_sendmsg

thread_info

restart_block
addr_limit

VLA

restart_block
addr_limit

restart_block
addr_limit

sock_sendmsg

The Stack is Back – Jon Oberheide Slide #31

Attempt #2

● Attempt #2
● Expand VLA to just above thread_info
● Overwrite using the stack frames of

subsequent calls (sock_sendmsg)

● Semi-thwarted!
● Overwrite value is uncontrolled and a

kernel space value so
restart_block is no good

● What about addr_limit?

start of stack

end of stack

udp_sendmsg

inet_sendmsg

econet_sendmsg

sock_sendmsg

thread_info

restart_block
addr_limit

VLA

restart_block
addr_limit

sock_sendmsg
call frames

The Stack is Back – Jon Oberheide Slide #32

Attempt #2 continued

● We can hit addr_limit with a value that
represents a high kernel space value
● Overwrite of addr_limit occurs in sock_sendmsg call

● You can't be serious...
● addr_limit is being saved/restored before/after the

sock_sendmsg call, nullifying our overwrite

oldfs = get_fs();
set_fs(KERNEL_DS);
err = sock_sendmsg(udpsock, &udpmsg, size);
set_fs(oldfs);

The Stack is Back – Jon Oberheide Slide #33

Attempt #2 continued

● We could try other subsequent function calls
besides sock_sendmsg
● Cause error condition, return from econet_sendmsg

early with a terminating mutex_unlock call. Eg:

● Write offsets of the stack frame don't align
● Pattern: chunks of two 8-byte writes w/kernel value
● Hit restart_block with kernel value (useless) or hit both

addr_limit (good) and preempt_count (crash)

if (len + 15 > dev->mtu) {
 mutex_unlock(&econet_mutex);
 return -EMSGSIZE;
}

The Stack is Back – Jon Oberheide Slide #34

Attempt #3

● Attempt #3
● Blow past thread_info and with VLA

and “write-back” towards the end of
the kernel stack

● Overwrite task_struct with an attacker
controlled address

● Ok, this is just insane...
● Yes, you can make a fake

task_struct in userspace,
but not in this century

start of stack

end of stack

udp_sendmsg

inet_sendmsg

econet_sendmsg

sock_sendmsg

VLA

task_struct

write
write
write

abort writes

if (!access_ok(VERIFY_READ,
 base, iov_len)) {
 mutex_unlock(&econet_mutex);
 return -EFAULT;
}

The Stack is Back – Jon Oberheide Slide #35

Need a different approach

● If thread_info is out, what can we do?
● Nothing useful on the stack, but...
● Need some audience help here...

It's clear the thread_info technique is not going to
work here due to extenuating circumstances

The Stack is Back – Jon Oberheide Slide #36

Trivia #2

Android Phone

1855
FOR0DAY

T-Shirt Phone Number

Any ideas of what to do if the thread_info
technique isn't going to work?

The Stack is Back – Jon Oberheide Slide #37

Beyond our stack

● A thread's kstack doesn't exist in a vacuum
● Each kstack allocated from the buddy allocator

● Screw intra-stack exploitation, let's talk inter-
stack exploitation

kstack 1 kstack 2 kstack 3

espespesp

The Stack is Back – Jon Oberheide Slide #38

Attacking adjacent kstacks

● Two big questions:
● How do we get two thread kernel stacks allocated

adjacently?
● How do we sanely modify another thread's stack to

gain code exec?

In an allocation-based overflow, we can blow past
the end of our stack and into an adjacent stack!

We sort of did this with
stackjacking self-discovery!

We sort of did this with
stackjacking Obergrope!

The Stack is Back – Jon Oberheide Slide #39

Kernel stack disclosures

.

.

.

1) process
makes syscall
and leaves
sensitive data
on kstack

2) kstack is reused
on subsequent
syscall and struct
overlaps with
sensitive data

foo.baz

sensitive data

kstack frame

foo.bar

struct foo {
 uint32_t bar;
 uint32_t leak;
 uint32_t baz;
};

syscall() {
 struct foo;
 foo.bar = 1;
 foo.baz = 2;
 copy_to_user(foo);
}

foo.leaksensitive data

3) foo struct is copied to
userspace, leaking 4
bytes of kstack through
uninitialized foo.leak
member

kstack frame

The Stack is Back – Jon Oberheide Slide #40

Kernel stack self-discovery

● If we can leak an pointer
to the kstack off the kstack,
we can calculate the base
address of the kstack

.

.

.

0xcdef1234

kstack frame

We call this kstack self-discovery

kstack_base = addr & ~(THREAD_SIZE – 1);

kstack_base = 0xcdef1234 & ~(8192 – 1)

kstack_base = 0xcdef0000 0xcdef0000

0xcdef2000

0xcdef1234
0xdeadbeef

The Stack is Back – Jon Oberheide Slide #41

Writing the adjacent kstack

● Getting adjacent kstacks
● Spawn children, have them

self-discover their kstack address,
spin until we get two adjacent
allocations

● Writing the adjacent stack
● Process #2 kstack needs to be in

a stable predictable state
● Process #1 needs a sufficient landing

zone to absorb mutex_unlock stack frame

start of stack 1
econet_sendmsg

write

start of stack 2

thread_info

mutex_unlock

VLA
thread_info

write
write
write

The Stack is Back – Jon Oberheide Slide #42

Sleepy syscalls are back

● Process #2 will enter a “sleepy syscall”
● Arbitrary sleeping to avoid dangerous race

conditions with the overflow write
● While asleep, process #1 will overwrite a return

address on process #2's kstack

● compat_sys_wait4 looks good
● Hey, same function we used for stackjacking!
● Large unused local stack vars to absorb the

mutex_unlock stack frame

The Stack is Back – Jon Oberheide Slide #43

Final exploit flow

● Achieve adjacent kstacks

● Process #2 goes to sleep

● Stack overflow in process #1

● Overwrite return address on
process #2 kernel stack

● Process #2 wakes up

● Process #2 returns to attacker control address

● Privilege escalation payload executed!

start of stack 1
econet_sendmsg

write

start of stack 2

thread_info

compat_sys_wait4

VLA

write

...sleep...

retaddrwrite

mutex_unlock

thread_info

The Stack is Back – Jon Oberheide Slide #44

Demo

DEMO TIME?

http://jon.oberheide.org/files/half-nelson.c

http://jon.oberheide.org/files/half-nelson.c

The Stack is Back – Jon Oberheide Slide #45

The stack is back

● A brief history of stack overflows

● Stack overflows in the Linux kernel

● Exploiting exotic stack overflows

● Discovering and mitigating stack overflows

The Stack is Back – Jon Oberheide Slide #46

Trivia #3

Android Phone

1855
FOR0DAY

T-Shirt Phone Number

What is one way to discover potential
stack overflow vulnerabilities?

The Stack is Back – Jon Oberheide Slide #47

jono discovery method

Ghetto kstack overflow discovery mechanism:

Advanced l33t static analysis:

Projected to win grugq's #grep2pwn 2012.

egrep -R "^[[:space:]]*(struct |char |
(u)?int(8_t|16_t|32_t|64_t)? |void)

[^=]+\[[a-z]+.*[\+*]?.*\];" * |
grep -v sizeof

The Stack is Back – Jon Oberheide Slide #48

pipacs discovery method

The proper way to do it: gcc plugin

Artist's depiction
of “theowl”

13:27 < pipacs> jono btw, i'm sorry to burst your
infiltrate bubble but the next stackleak plugin will
fix the alloca problems...

13:28 < pipacs> (and if you want to find all those
bugs, the same plugin can tell you exactly where
they occur ;)

pax_check_alloca verifies kstack sanity after alloca calls.

Inserted at compile time by stackleak_check_alloca into
any functions that use __builtin_alloca.

See tools/gcc/stackleak_plugin.c in latest PaX patch

The Stack is Back – Jon Oberheide Slide #49

Exploiting hardened kernels

● On grsec/PaX kernels, thread_info is no longer stored
at the base of the kernel stack

● Mitigated the Rosengrope stackjacking method
● So, the standard thread_info overwrite is ineffective

● Yes...
● But RANDKSTACK makes it hard and new STACKLEAK

plugin makes it near infeasible

Can we use the adjacent process exploitation
technique against hardened kernels?

The Stack is Back – Jon Oberheide Slide #50

Mitigating exploitation

● Move thread_info off the stack!
● Thwarts vanilla thread_info exploitation technique
● Patches years ago to LKML, rejected by mainline

● Thwarting the adjacent process
technique is a bit harder
● Something like PaX's RANDKSTACK would make

things harder

The Stack is Back – Jon Oberheide Slide #51

Wrap-up

● GIVE UP HEAPSTERS!
● Win8 fixed everything, the heap is over

● Stack overflows are exploitable
● At least in the Linux kernel
● How about your favorite OS? Windows/BSD/etc?

● Don't shun “unexploitable” vuln classes
● Other situations? Userspace via browser/js?

The Stack is Back – Jon Oberheide Slide #52

Greetz

● #busticati

● 1kk1q85Xp$Id.gAcJOg7uelf36VQwJQ/

● ;PpPppPpPpPPPpP

The Stack is Back – Jon Oberheide Slide #53

Q&A

Jon Oberheide
jon@oberheide.org

Duo Security

QUESTIONS?

mailto:jon@oberheide.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

