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Introduction

 Jon Oberheide

 Abusing Android devices, 
kernel exploitation, and 
beer brewing

 Fun with Android security and 
mobile vulnerability assessment



Agenda

 Mobile vulnerability assessment

 X-Ray for Android

 Preliminary X-Ray Results

 Wrap-up



Brief History of Vuln Assessment

1992: Chris Klaus creates the 
Internet Scanner at Georgia Tech



Modern day VA

Present day: Many forms of vulnerability 
assessment, management, mitigation



What about mobile?

Mobile?



Ideal mobile security

 In a perfect world...
 AOSP: Google ships a secure base platform
 OEM: Samsung doesn't introduce any 

vulnerabilities in its customization of Android
 Carrier: T-Mobile rolls out rapid OTA updates 

to keep users up to date and patched.

Why do we need mobile 
vulnerability assessment?



The real world

 In reality: 
 AOSP: Android platform is far from perfect
 OEM: Customizations by device OEMs are a 

large source of vulnerabilities.
 Carrier: Updates are not made available for 

months and sometimes even years.

All software has bugs, mobile or otherwise.

Here's where mobile differs from PC world.



Disclosure & patching process

Researcher

Google
Device
OEM Carrier

Third-party
developer

Public Attackers
days

weeks

months months

days

days



Challenges in patching

 Why is mobile patching challenging?
 Complicated software supply chain 
 Testing, testing, testing
 Risk of bricking devices
 Inverted economic incentives



What the carriers say

"Patches must be integrated and tested for different platforms 
to ensure the best possible user experience. Therefore, 
distribution varies by manufacturer and device." - AT&T



Challenges in mobile VA

 Mobile device software is different
 Diverse set of software, hardware, configuration
 No control of software loadset

 Want to assess your device's vulnerabilities?
 Rely on version numbers? Rely on exploitation?
 Diverse set of devices, many device-specific vulnerabilities

 Want to patch your device's vulnerabilities?
 Can't patch the device, unless rooted



Privilege escalation vulnerabilities

 Android security model
 Permissions framework, “sandboxing” (uid/gid)
 Compromise of browser (or other app) != full control of device

 Privilege escalation vulnerabilities
 Unprivileged code execution → Privileged code execution
 Publicly released to allow users to jaibreak their devices
 Public exploits reused by mobile malware to root victim's 

devices
 Private exploits available, but little need currently

Why are privilege escalation vulnerabilities important?



Quick trivia

 What's wrong with the following code?

 Assuming a uid/euid=0 process dropping 
privileges...

/* Code intended to run with elevated privileges */
do_stuff_as_privileged();

/* Drop privileges to unprivileged user */
setuid(uid);

/* Code intended to run with lower privileges */
do_stuff_as_unprivileged();



Zimperlich vulnerability

 Return value not checked! setuid(2) can fail:

 Android's zygote does fail if setuid does:

 Fork until limit, when setuid fails, app runs as 
uid 0!

    EAGAIN The uid does not match the current
           uid and uid brings process over its
           RLIMIT_NPROC resource limit.

        err = setuid(uid);
        if (err < 0) {
            LOGW("cannot setuid(%d): %s", uid, strerror(errno));
        }



Android privesc vulns at a glance

 ASHMEM: Android kernel mods, no mprotect check 
 Exploid: no netlink source check, inherited from udev
 Gingerbreak: no netlink source check, GOT overwrite
 Levitator: My_First_Kernel_Module.ko, kmem read/write
 Mempodroid: inherited from upstream Linux kernel
 RageAgainstTheCage: no setuid retval check
 Wunderbar: inherited from upstream Linux kernel
 Zimperlich: no setuid retval check
 ZergRush: UAF in libsysutils

Mobile vulns are nothing special!
Same old mistakes, different platform!
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 Mobile vulnerability assessment

 X-Ray for Android

 Preliminary X-Ray Results

 Wrap-up



X-Ray for Android

http://xray.io

 X-Ray for Android
 First app to perform _actual_

vulnerability assessment on mobile
 Detects 8 of the most common 

Android privilege escalation 
vulnerabilities

 Works without any special privileges 
or permissions

 Freely available for end users to run



Static probes

 Static probes
 Can identify vulnerabilities using static analysis
 Send up vulnerable component (eg. binary, library) to 

service
 Disassemble and look for patched/vulnerable code 

paths

X-Ray
cloud

service

libdvm.so

result

Analyze!



Static probe example: Zimperlich



Dynamic probes

 Dynamic probes
 Not all vulnerabilities are in software components we 

can access
 Example: kernel vulns, kernel image not accessible by 

X-Ray
 Probe locally for vulnerability presence!

X-Ray
cloud service

halp!

liblevitator_v1.so

Execute!

result



Dynamic probe example: Levitator
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X-Ray Launch

 Launched X-Ray app publicly in August 2012 the 
week of BlackHat

 Not in Google Play, but download at http://xray.io
 Scan results collected from users who downloaded 

and ran the X-Ray app on their Android device

59,277 devices
1,602 models
151 countries

http://xray.io/


Scary numbers

 Percent of the global Android population that 
are vulnerable to a privilege escalation detected 
by X-Ray...

60.6% vulnerable



Methodology

 How to extrapolate out to global Android 
population?
 Selection bias?

 Google provides stats 
on Android versions →

 If we saw 98.8% of 2.2 devices 
were vulnerable, and 2.2 makes 
up 15.5% of Android globally, that contributes 
15.3% to the total % of vulnerable Android devices.



Breakdown of data

Version 
bucket

Vulnerable
(X-Ray)

Global population
(Google)

Vulnerable globally
(extrapolated)

1.5 100% 0.2% 0.2%

1.6 100% 0.5% 0.5%

2.1 96.7% 4.2% 4.1%

2.2 98.8% 15.5% 15.3%

2.3 100% 0.3% 0.3%

2.3.3 63% 60.3% 38.1%

3.1 0% 0.5% 0%

3.2 0% 1.8% 0%

4.0 21.4% 0.1% 0.02%

4.0.3 9.6% 15.8% 1.4%

4.1 0% 0.5% 0%



Changes over time

60.6% vulnerable 52.3% vulnerable

January, 2013August, 2012



Interesting tidbits: version numbers

 So, should we use version numbers for VA?
 Data says....NO!

 Not many earlier version numbers that 
shouldn't be vulnerable, but are.

 A lot more later version numbers that should be 
patched, but are still vulnerable!

 Patch regressions, bad third-party ROMs, etc



Interesting tidbits: affected devices

/*
 * levitator.c
...
 *     The vulnerability affects Android devices with the PowerVR SGX chipset
 *     which includes popular models like the Nexus S and Galaxy S series. The 
 *     vulnerability was patched in the Android 2.3.6 OTA update.
 */

X-Ray offers global visibility into affected device models

mysql> SELECT COUNT(DISTINCT(model)) 
FROM results
WHERE probe='levitator' 
AND result='vulnerable';
+------------------------+
| COUNT(DISTINCT(model)) |
+------------------------+
|                    136 |
+------------------------+
1 row in set (0.41 sec)

mysql> SELECT DISTINCT(model) 
FROM results
WHERE probe='levitator'
AND result='vulnerable' 
AND model LIKE '%Kindle%';
+-------------+
| model       |
+-------------+
| Kindle Fire |
+-------------+
1 row in set (0.43 sec)
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Lessons learned from X-Ray

 Slow patching is as big as a problem as many 
suspected
 X-Ray demonstrates the problem with hard data

 Mobile VA techniques can't rely on version 
numbers
 Positive identification based on the actual code

 Mobile patching practices need to change 
somehow
 Centralized? Third-party ecosystem? 



What's next for X-Ray?

 Additional vulnerability probes
 Including non-privesc vulns

(I'M LOOKING AT YOU WEBKIT)
 Long-term vulnerable population

tracking
 Update stats as Google updates 

the version distribution data
 Is patching improving over time?

 Patching by X-Ray
 Exploit the vuln to gain 

privilege to patch it!



Next steps

 More public pressure on the responsible parties
 Top-down from Google
 Bottom-up from users and companies

 Open up platform security to third-parties?
 Allow enterprises, third-parties to offload patching 

responsibility
 Better platform security in general, less vulns to 

patch

This is the biggest problem in mobile security today.



Q&A

Q&A
#duotalk
Contact Information:

Jon Oberheide
jono@duosecurity.com

@jonoberheide
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