
Mobile Vulnerability Assessment:
There's an App for That!

Jon Oberheide
CTO, Duo Security

jono@duosecurity.com

mailto:jono@duosecurity.com

Introduction

 Jon Oberheide

 Abusing Android devices,
kernel exploitation, and
beer brewing

 Fun with Android security and
mobile vulnerability assessment

Agenda

 Mobile vulnerability assessment

 X-Ray for Android

 Preliminary X-Ray Results

 Wrap-up

Brief History of Vuln Assessment

1992: Chris Klaus creates the
Internet Scanner at Georgia Tech

Modern day VA

Present day: Many forms of vulnerability
assessment, management, mitigation

What about mobile?

Mobile?

Ideal mobile security

 In a perfect world...
 AOSP: Google ships a secure base platform
 OEM: Samsung doesn't introduce any

vulnerabilities in its customization of Android
 Carrier: T-Mobile rolls out rapid OTA updates

to keep users up to date and patched.

Why do we need mobile
vulnerability assessment?

The real world

 In reality:
 AOSP: Android platform is far from perfect
 OEM: Customizations by device OEMs are a

large source of vulnerabilities.
 Carrier: Updates are not made available for

months and sometimes even years.

All software has bugs, mobile or otherwise.

Here's where mobile differs from PC world.

Disclosure & patching process

Researcher

Google
Device
OEM Carrier

Third-party
developer

Public Attackers
days

weeks

months months

days

days

Challenges in patching

 Why is mobile patching challenging?
 Complicated software supply chain
 Testing, testing, testing
 Risk of bricking devices
 Inverted economic incentives

What the carriers say

"Patches must be integrated and tested for different platforms
to ensure the best possible user experience. Therefore,
distribution varies by manufacturer and device." - AT&T

Challenges in mobile VA

 Mobile device software is different
 Diverse set of software, hardware, configuration
 No control of software loadset

 Want to assess your device's vulnerabilities?
 Rely on version numbers? Rely on exploitation?
 Diverse set of devices, many device-specific vulnerabilities

 Want to patch your device's vulnerabilities?
 Can't patch the device, unless rooted

Privilege escalation vulnerabilities

 Android security model
 Permissions framework, “sandboxing” (uid/gid)
 Compromise of browser (or other app) != full control of device

 Privilege escalation vulnerabilities
 Unprivileged code execution → Privileged code execution
 Publicly released to allow users to jaibreak their devices
 Public exploits reused by mobile malware to root victim's

devices
 Private exploits available, but little need currently

Why are privilege escalation vulnerabilities important?

Quick trivia

 What's wrong with the following code?

 Assuming a uid/euid=0 process dropping
privileges...

/* Code intended to run with elevated privileges */
do_stuff_as_privileged();

/* Drop privileges to unprivileged user */
setuid(uid);

/* Code intended to run with lower privileges */
do_stuff_as_unprivileged();

Zimperlich vulnerability

 Return value not checked! setuid(2) can fail:

 Android's zygote does fail if setuid does:

 Fork until limit, when setuid fails, app runs as
uid 0!

 EAGAIN The uid does not match the current
 uid and uid brings process over its
 RLIMIT_NPROC resource limit.

 err = setuid(uid);
 if (err < 0) {
 LOGW("cannot setuid(%d): %s", uid, strerror(errno));
 }

Android privesc vulns at a glance

 ASHMEM: Android kernel mods, no mprotect check
 Exploid: no netlink source check, inherited from udev
 Gingerbreak: no netlink source check, GOT overwrite
 Levitator: My_First_Kernel_Module.ko, kmem read/write
 Mempodroid: inherited from upstream Linux kernel
 RageAgainstTheCage: no setuid retval check
 Wunderbar: inherited from upstream Linux kernel
 Zimperlich: no setuid retval check
 ZergRush: UAF in libsysutils

Mobile vulns are nothing special!
Same old mistakes, different platform!

Agenda

 Mobile vulnerability assessment

 X-Ray for Android

 Preliminary X-Ray Results

 Wrap-up

X-Ray for Android

http://xray.io

 X-Ray for Android
 First app to perform _actual_

vulnerability assessment on mobile
 Detects 8 of the most common

Android privilege escalation
vulnerabilities

 Works without any special privileges
or permissions

 Freely available for end users to run

Static probes

 Static probes
 Can identify vulnerabilities using static analysis
 Send up vulnerable component (eg. binary, library) to

service
 Disassemble and look for patched/vulnerable code

paths

X-Ray
cloud

service

libdvm.so

result

Analyze!

Static probe example: Zimperlich

Dynamic probes

 Dynamic probes
 Not all vulnerabilities are in software components we

can access
 Example: kernel vulns, kernel image not accessible by

X-Ray
 Probe locally for vulnerability presence!

X-Ray
cloud service

halp!

liblevitator_v1.so

Execute!

result

Dynamic probe example: Levitator

Agenda

 Mobile vulnerability assessment

 X-Ray for Android

 Preliminary X-Ray Results

 Wrap-up

X-Ray Launch

 Launched X-Ray app publicly in August 2012 the
week of BlackHat

 Not in Google Play, but download at http://xray.io
 Scan results collected from users who downloaded

and ran the X-Ray app on their Android device

59,277 devices
1,602 models
151 countries

http://xray.io/

Scary numbers

 Percent of the global Android population that
are vulnerable to a privilege escalation detected
by X-Ray...

60.6% vulnerable

Methodology

 How to extrapolate out to global Android
population?
 Selection bias?

 Google provides stats
on Android versions →

 If we saw 98.8% of 2.2 devices
were vulnerable, and 2.2 makes
up 15.5% of Android globally, that contributes
15.3% to the total % of vulnerable Android devices.

Breakdown of data

Version
bucket

Vulnerable
(X-Ray)

Global population
(Google)

Vulnerable globally
(extrapolated)

1.5 100% 0.2% 0.2%

1.6 100% 0.5% 0.5%

2.1 96.7% 4.2% 4.1%

2.2 98.8% 15.5% 15.3%

2.3 100% 0.3% 0.3%

2.3.3 63% 60.3% 38.1%

3.1 0% 0.5% 0%

3.2 0% 1.8% 0%

4.0 21.4% 0.1% 0.02%

4.0.3 9.6% 15.8% 1.4%

4.1 0% 0.5% 0%

Changes over time

60.6% vulnerable 52.3% vulnerable

January, 2013August, 2012

Interesting tidbits: version numbers

 So, should we use version numbers for VA?
 Data says....NO!

 Not many earlier version numbers that
shouldn't be vulnerable, but are.

 A lot more later version numbers that should be
patched, but are still vulnerable!

 Patch regressions, bad third-party ROMs, etc

Interesting tidbits: affected devices

/*
 * levitator.c
...
 * The vulnerability affects Android devices with the PowerVR SGX chipset
 * which includes popular models like the Nexus S and Galaxy S series. The
 * vulnerability was patched in the Android 2.3.6 OTA update.
 */

X-Ray offers global visibility into affected device models

mysql> SELECT COUNT(DISTINCT(model))
FROM results
WHERE probe='levitator'
AND result='vulnerable';
+------------------------+
| COUNT(DISTINCT(model)) |
+------------------------+
| 136 |
+------------------------+
1 row in set (0.41 sec)

mysql> SELECT DISTINCT(model)
FROM results
WHERE probe='levitator'
AND result='vulnerable'
AND model LIKE '%Kindle%';
+-------------+
| model |
+-------------+
| Kindle Fire |
+-------------+
1 row in set (0.43 sec)

Agenda

 Mobile vulnerability assessment

 X-Ray for Android

 Preliminary X-Ray Results

 Wrap-up

Lessons learned from X-Ray

 Slow patching is as big as a problem as many
suspected
 X-Ray demonstrates the problem with hard data

 Mobile VA techniques can't rely on version
numbers
 Positive identification based on the actual code

 Mobile patching practices need to change
somehow
 Centralized? Third-party ecosystem?

What's next for X-Ray?

 Additional vulnerability probes
 Including non-privesc vulns

(I'M LOOKING AT YOU WEBKIT)
 Long-term vulnerable population

tracking
 Update stats as Google updates

the version distribution data
 Is patching improving over time?

 Patching by X-Ray
 Exploit the vuln to gain

privilege to patch it!

Next steps

 More public pressure on the responsible parties
 Top-down from Google
 Bottom-up from users and companies

 Open up platform security to third-parties?
 Allow enterprises, third-parties to offload patching

responsibility
 Better platform security in general, less vulns to

patch

This is the biggest problem in mobile security today.

Q&A

Q&A
#duotalk
Contact Information:

Jon Oberheide
jono@duosecurity.com

@jonoberheide

mailto:jono@duosecurity.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

