

Internet Inter-Domain Traffic

Craig Labovitz, Scott lekel-Johnson, Danny McPherson Arbor Networks

> Jon Oberheide, Farnam Jahanian University of Michigan

Motivation

Measuring the Internet is hard

Significant previous work on

- Router and AS-level topologies
- Individual link / ISP traffic studies
- Synthetic traffic demands
- But limited "ground-truth" on inter-domain traffic
 - Most commercial arrangements under NDA
 - Significant lack of uniform instrumentation

Goal: longitudinal observations of Internet traffic

- Can we instrument representative distribution of ISPs?
- Estimate of traffic volume / growth
- Analysis of changes in Internet traffic demands

Conventional Wisdom

- Internet is a global scale end-to-end network
 - Packets transit (mostly) unmolested
 - Value of network is global addressability / reachability (metcalfe effect)
- Broad distribution of traffic sources / sinks
- An Internet "core" exists
 - Dominated by a dozen global transit providers
 - Interconnecting content, consumer and regional providers

Methodology

- Focus on inter-domain traffic
 - i.e. distinguish from web hits, tweets, VPN, etc.
- Leverage widely deployed commercial Internet monitoring infrastructure
 - Add export of coarse grain traffic statistics (ASNs, ASPaths, protocols, ports, etc.)
 - Via anonymous XML forwarded to central servers
- Cajole carriers into participation
 - 110+ ISPs / content providers
 - Including 3,000 edge routers and 100,000 interfaces
 - And an estimated ~25% all inter-domain traffic
- Wait two years...

Additional Methodology Details

- Within a given ISP, commercial probes
 - Monitors NetFlow / Jflow / etc and routing across multiple edge routers
 - Probes are topology aware of ISP, backbone and customer boundaries
 - Some deployments include payload / DPI observations

Post-process data

- Focus on distributions / share
- Calculate percentages per category
- Calculate weighted averages using number of routers in each deployment
- Augment analysis with
 - Provider interviews / surveys
 - Known traffic volumes

Methodology Validation

- Validate predictions based on "ground-truth"
 - Linear fit of 12 known ISP traffic demands
 - Significant variety in measurement technology and definitions
 - Linear R squared (coefficient of determination) value of 0.91
- Further validate with extensive discussions / surveys of providers
- Also provides estimate of inter-domain size / growth (45 Tbs and 45%)

Change in Carrier Traffic Demands

Rank	2007 Top Ten	%	Rank
1	ISP A	5.77	1
2	ISP B	4.55	2
3	ISP C	3.35	3
4	ISP D	3.2	4
5	ISP E	2.77	5
6	ISP F	2.6	6
7	ISP G	2.24	7
8	ISP H	1.82	8
9	ISP I	1.35	9
10	ISP J	1.23	10

Rank	2009 Top Ten	%
1	ISP A	9.41
2	ISP B	5.7
3	Google	5.2
4	-	
5	-	
6	Comcast	3.12
7	-	
8	-	
9	-	
10	-	

Based on analysis of anonymous ASN (origin/transit) data (as a weighted average % of all Internet Traffic). Top ten has NO direct relationship to study participation.

- In 2007, top ten match "tier-1" ISPs (e.g., Wikipedia)
- In 2009, global transit carry significant traffic volumes
 - But Google and Comcast join the list
 - And a significant percentage of ISP A traffic is Google transit

Consolidation of Content (Grouped Origin ASN)

- In 2007, thousands of ASNs contributed 50% of content
- In 2009, 150 ASNs contribute 50% of all Internet traffic

A Google Case Study

- Graph of weighted averaged grouped ASNs
- Over time Google absorbs YouTube traffic
- As of July 2009, Google accounts for 6% of all Internet inter-domain traffic
- Google the fastest growing ASN group

A Comcast Case Study

- In 2007, Comcast has typical "eyeball" peering ratios
- By 2009, Comcast resembles a transit / content provider
 - Wholesale transit, cell backhaul, video distribution, backbone consolidation

Market Forces Intuition

Revenue from Internet Transit Source: Dr. Peering, Bill Norton

Revenue from Internet Advertisement Source: Interactive Advertising Bureau

Page 12 - Labovitz SIGCOMM 2010

Market Intuition

Commoditization of IP and Hosting / CDN

- Drop of price of wholesale transit
- Drop of price of video / CDN
- Economics and scale drive enterprise to "cloud"

Consolidation

- Bigger get bigger (economies of scale)
- e.g., Google, Yahoo, MSFT acquisitions
- Success of bundling / Higher Value Services
 - Triple and quad play, etc.
- New economic models
 - Paid content (ESPN 3), paid peering, etc.
 - Difficult to quantify due to NDA / commercial privacy
- Disintermediation
 - Direct interconnection of content and consumer
 - Driven by both cost and increasingly performance

Traditional Internet Model

Consumers and business customers

A New Internet Model

- Flatter and much more densely interconnected Internet
- Disintermediation between content and "eyeball" networks
- New commercial models between content, consumer and transit

Page 15 - Labovitz SIGCOMM 2010

Applications

Rank	Application	2007	2009	Change
1	Web	41.68%	52.00%	24.76%
2	Video	1.58%	2.64%	67.09%
3	VPN	1.04%	1.41%	35.58%
4	Email	1.41%	1.38%	-2.13%
5	News	1.75%	0.97%	-44.57%
6	P2P (*)	2.96%	0.85%	-71.28%
7	Games	0.38%	0.49%	28.95%
8	SSH	0.19%	0.28%	47.37%
9	DNS	0.20%	0.17%	-15.00%
10	FTP	0.21%	0.14%	-33.33%
	Other	2.56%	2.67%	4.30%
	Unclassified	46.03%	37.00%	-19.62%

(*) 2009 P2P Value based on 18% Payload Inspection Weighted average percentage of all Internet traffic using well-known ports

- **Growing volume of Internet traffic uses port 80 / 443**Includes significant video component and source of most growth
- Unclassified includes P2P and video
 - Payload matching suggests P2P at 18%
 - P2P is fastest declining

Evolution of End-to-End

- Growing dominance of web as application front-end
- Plus burden of ubiquitous network layer security policies
- Results in growing concentration of application traffic over a decreasing number of TCP / UDP ports
 - Especially port 80
 - Especially video

Weighted average percentage of Xbox Internet traffic

Migration of File Sharing to the Web

- In 2006, P2P one of largest threats facing carriers
 - Significant protocol, engineering and regulatory effort / debate
- In 2010, P2P fastest declining application group
 - Trend in both well-known ports and payload based analysis
- Significant corresponding growth in direct download and streaming video
 - Carpathia small hosting company by traffic volume in Fall 2008
 - Mega becomes Carpathia customer in November 2008
 - Carpathia Hosting grows overnight to more than 0.8% of all traffic

Discussion

- Significant changes in inter-domain traffic patterns
- Not quite Wired's "The Web is Dead"
- But significant shift from connectivity to content
 - Aggregation of content / traffic sources
 - Shift from transit to direct interconnection
 - Most significant growth in ~150 large content ASN
- And concurrent shift in applications to port 80
 - i.e. the web may represent the new end-to-end
- Implications on engineering and research
 - ACL / port based security model
 - Fault tolerance
 - Routing, traffic engineering, network design
 - Rapid growth of non-interactive traffic demands (i.e. DC)

Questions

labovit@arbor.net http://www.monkey.org/~labovit

Page 20 - Labovitz SIGCOMM 2010