
STARRING

DR. OBERHEIDE and DR. MILLER

BUSTICATI PRODUCTIONS PRESENTS

DISSECTING THE ANDROID BOUNCER

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #2

PREVIEWS

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #3

PINATA TIME!

● CANDY!
● SNACKS!
● BEER!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #4

PREVIEWS

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #5

BACK IN THE GOOD OL' DAYS

The Android Market app used to
primarily use HTTP as a transport!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #6

BACK IN THE GOOD OL' DAYS

So you could MITM the protobuf, inject your app into search
results, trick people into installing malicious apps, etc

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #7

A NEW APP STORE?

Can't do as much nowadays, but still can play some tricks...

Fire up your Google Play app if you're on the wifi!

?

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #8

A NEW APP STORE!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #9

JONO AND CHARLIE APP STORE

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #10

COMING SOON...

Coming soon to a
GitHub repository near you?

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #11

FEATURE PRESENTATION

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #12

STARRING...

Google Android's Bouncer

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #13

OPERATING PLAN

● Diagnosis
● Intro to Bouncer and Google Play

● Exploratory surgery
● Fingerprinting Bouncer and its environment

● Open surgery
● Abusing Bouncer in all sorts of fun ways

● Suture and close
● How Google can fix up Bouncer

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #14

ANDROID BOUNCER

Android and Security, Feb 2, 2012

Today we’re revealing a service we’ve developed, codenamed Bouncer,
which provides automated scanning of Android Market for potentially
malicious software without disrupting the user experience of Android
Market or requiring developers to go through an application approval
process.

The service performs a set of analyses on new applications,
applications already in Android Market, and developer accounts. Here’s
how it works: once an application is uploaded, the service immediately
starts analyzing it for known malware, spyware and trojans. It also
looks for behaviors that indicate an application might be misbehaving,
and compares it against previously analyzed apps to detect possible red
flags. We actually run every application on Google’s cloud
infrastructure and simulate how it will run on an Android device to
look for hidden, malicious behavior.

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #15

800 LBS ROBOT IN THE ROOM

● Bouncer is easily bypassed
● No surprise there
● Google is trying to solve a very difficult problem

● We'll show a bunch of ways
● System, network, framework, timing, etc

● Story of how we analyzed Bouncer
● Full of mystery and intrigue!
● Also, pinatas and beer!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #16

GETTING STARTED

● How do we go about dissecting Bouncer?
● How would we create such a system?
● We had lots of unanswered questions:

● Does Bouncer use static/dynamic analysis?

● When does Bouncer analyze the app? Are all apps analyzed?

● How do we get Market accounts to start figuring this out?

● Network access: open, filtered, emulated, unrestricted?

● Environment: what's the system execution environment look like?

● Timing: how long does our app run? Accelerated clock?

● Input: Artificial input to the app? Program state exploration?

● Any triggers, vulnerable services, etc?

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #17

FIRST THINGS FIRST

We need some Play accounts...

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #18

WHAT YOU NEED

● Money
● Prepaid phones
● Prepaid CCs
● EC2 micros

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #19

BURNERS FOR GMAIL

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #20

PAYMENT LOOPHOLE

We can submit apps without paying!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #21

HOW DO WE START?

● How do we start?

● Submit a simple app that phones
home to our C&C server

● See what happens?

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #22

FIRST DO NO HARM

● Hippocratic Oath forbids us from
pushing malware onto innocent
bystanders
● Put warnings in the description
● Only make available to impossible hardware
● Make the app not interesting
● …ugh...

● Any other way???

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #23

SUBMISSION STEP 1

Upload your APK...

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #24

SUBMISSION STEP 2

Fill in application metadata...

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #25

SUBMISSION STEP 3

● Press “Save” button...

● Wait, what was that?!?
● Looks like Bouncer ran our app!

● Before it was actually published to the market!

74.125.19.84 - - [08/Apr/2012:23:33:05 -0400]
"GET /?id=9774d56d682e549c HTTP/1.1" 200 5 "-"
"Apache-HttpClient/UNAVAILABLE (java 1.4)" "-"

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #26

OPERATING PLAN

● Diagnosis
● Intro to Bouncer and Google Play

● Exploratory surgery
● Fingerprinting Bouncer and its environment

● Open surgery
● Abusing Bouncer in all sorts of fun ways

● Suture and close
● How Google can fix up Bouncer

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #27

BOUNCER AT 30000 FEET

● Bouncer in a nutshell
● Dynamic runtime analysis of app
● Emulated Android environment
● Runs for 5 minutes
● On Google's infrastructure
● Allows external network access

● If we can fingerprint the environment
● Pretend to be benign when run on Bouncer
● Execute malicious activity when run on real devices

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #28

FINGERPRINT CLASSIFICATION

● Underlying system
● Linux, QEMU emulator, system properties, etc

● Android Framework
● Sensors: camera, accelerometer, gps, etc
● Data sources: address book, sms, photos, files, etc

● Environment and behaviors
● IP address, timing attacks, input automation, etc

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #29

SYSTEM/QEMU IDENTIFIERS

● Lots of low-hanging fruit
● /proc/cpuinfo: goldfish
● getprop attributes: ro.kernel.qemu
● Obvious QEMU stuff: /sys/qemu_trace, etc
● Many many more...

● Once the easy stuff is fixed
● Fingerprinting QEMU based on emulation discrepancies
● http://static.usenix.org/event/woot09/tech/full_papers/paleari.pdf
● Could fingerprint the exact QEMU version (and exploit ;-)

http://static.usenix.org/event/woot09/tech/full_papers/paleari.pdf

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #30

SYSTEM VITAL SIGNS

Galaxy Nexus Bouncer*

Brand Google Tmobile

CPUABI arbeabi-v7a armeabi

CPUABI2 armeabi unknown

Host vpbs3.mtv.corp.google.com android-test-
2.mtv.corp.google.com

Manufacturer samsung HTC

Model Galaxy Nexus T-Mobile myTouch 3G

Product yakju opal

Serial 01469107030XXXXX unknown

*May be version dependent
on requested SDK version of
submitted application

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #31

INVASIVE VITAL SIGNS

Galaxy Nexus Emulator Bouncer*

Phone number 1248760XXXX 15555215554 15555215504

Phone device 358350040XXX
XXX

0000000000000
00

112358132134559

Phone serial 8901260362485
XXXXXX

8901410321111
8510720

89014103211118510720

Sim name T-Mobile Android T-Mobile

Network name T-Mobile Android T-Mobile

*May be version dependent
on requested SDK version of
submitted application

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #32

MORE VITALS

● Android ID: 9774d56d682e549c
● All emulators return this ID
● Some older phones return this as well
● Flashed OS mods tend to return this too
● http://stackoverflow.com/questions/6106681/android-how-are-you-dealing-with-9774d56d682e549c-android-id

● More recent tests indicate this ID may
be changing and/or dynamic

http://stackoverflow.com/questions/6106681/android-how-are-you-dealing-with-9774d56d682e549c-android-id

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #33

BOUNCER'S OWNER

● Google account associated with the
Bouncer device:

● miles.karlson@gmail.com

base64.b64decode('OyBtaWxlcy5rYXJsc29
uQGdtYWlsLmNvbSwgY29tLmdvb2dsZQ==')
'; miles.karlson@gmail.com,
com.google'

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #34

CONTACT DATABASE

● Who does Miles hang out with?
● Check the Android contact lists

● michelle.k.levin@gmail.com

74.125.184.94 [10/May/2012:09:34:19
0500] "GET /index.html?
q=TWljaGVsbGUgTGV2aW4gbWljaGVsbGUuay5sZXZp
bkBnbWFpbC5jb20= HTTP/1.1" 200 44

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #35

WHO IS MICHELLE?

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #36

LET'S GET IN TOUCH!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #37

MICHELLE LOVES SECURITY

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #38

SDCARD CONTENTS

● download/cat.jpg
● download/

lady-gaga-300.jpg
● DCIM/Camera/

IMG_20120302
_142816.jpg

● android/data/
passwords.txt

lady-gaga-300.jpg

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #39

BOUNCER IP RANGES

● Bouncer allows Internet access
● So what IPs does it come from?

● 74.125.0.0/16
● Also in recent tests: 209.85.128.0/17
● Manual review: 173.194.99.0/16

$ whois 74.125.19.84 | grep OrgName
OrgName: Google Inc.
$ whois 173.194.99.18 | grep OrgName
OrgName: Google Inc.

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #40

TIMING CONSIDERATIONS

● Bouncer runs your app for 5 minutes
● Don't do anything bad for 5 minutes! Duh.
● Not long term. Could be run later, longer...

● Timing attacks
● Bouncer is not a physical device, QEMU is SLOW!
● Performance/benchmark fingerprinting
● NEON, Thumb, etc make it even more obvious

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #41

INPUT EMULATION

● Bouncer explores the app by
emulating UI input, clicking, etc:

● Predictable input actions can be used
to fingerprint vs real user

74.125.184.81 [10/May/2012:10:41:10 0500]
"GET /foo?q=opened HTTP/1.1" 200 413
74.125.184.89 [10/May/2012:10:41:11 0500]
"GET /foo?q=after_alert HTTP/1.1" 200 413
74.125.184.32 [10/May/2012:10:41:41 0500]
"GET /foo?q=clicked_ok HTTP/1.1" 200 413
74.125.184.89 [10/May/2012:10:41:48 0500]
"GET /foo?q=clicked HTTP/1.1" 200 413

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #42

OPERATING PLAN

● Diagnosis
● Intro to Bouncer and Google Play

● Exploratory surgery
● Fingerprinting Bouncer and its environment

● Open surgery
● Abusing Bouncer in all sorts of fun ways

● Suture and close
● How Google can fix up Bouncer

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #43

OPEN SURGERY

Remote connect-back shell demo!

http://www.youtube.com/watch?v=ZEIED2ZLEbQ

http://www.youtube.com/watch?v=ZEIED2ZLEbQ

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #44

MEDICAL LICENSE ISSUES

We got caught a couple times in our early
experiments doing blatantly stupid stuff

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #45

GETTING CAUGHT

● What happens when you get flagged?
● Inferred Bouncer process

● Dynamic analysis of submitted app
● If flagged, manual analysis by human operator
● If deemed malicious, goodbye account!

● Manual analysis comes from different
IP range (173.194.99.0/16)
● Accidentally sent commands to the human operator

once thinking it was my connect-back shell :-P

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #46

SUSPENDED

Charlie
couldn't appeal :-(

Now banned from
 iOS AND Android!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #47

PARASITIC COMPUTING?

● Hmm, Bouncer runs app for 5 minutes
● 5 free minutes of Google's computation resources!

● What to do with this “free” compute
power provided by Google?
● Find aliens? Cure cancer? Nah...
● Let's fuzz Android on Android using Android!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #48

FUZZ ANDROID ON ANDROID

● Android self-fizzer
● Queries server for which file to test
● Grabs the file with the browser
● Checks logs for crashes
● Reports crashlog to server if crash

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #49

FUZZING LOGS

74.125.184.23 [11/May/2012:09:47:35 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.19 [11/May/2012:09:47:37 0500] "GET /pngs/178.png HTTP/1.1" 200 371
74.125.184.95 [11/May/2012:09:47:39 0500] "GET /favicon.ico HTTP/1.1" 200 3638
74.125.184.83 [11/May/2012:09:47:41 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.92 [11/May/2012:09:47:42 0500] "GET /pngs/179.png HTTP/1.1" 200 371
74.125.184.42 [11/May/2012:09:47:43 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.83 [11/May/2012:09:47:44 0500] "GET /pngs/180.png HTTP/1.1" 200 371
74.125.184.21 [11/May/2012:09:47:46 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.46 [11/May/2012:09:47:47 0500] "GET /pngs/181.png HTTP/1.1" 200 371
74.125.184.89 [11/May/2012:09:47:48 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.80 [11/May/2012:09:47:49 0500] "GET /pngs/182.png HTTP/1.1" 200 371
74.125.184.41 [11/May/2012:09:47:51 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.31 [11/May/2012:09:47:52 0500] "GET /pngs/183.png HTTP/1.1" 200 371
74.125.184.82 [11/May/2012:09:47:55 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.24 [11/May/2012:09:47:57 0500] "GET /pngs/184.png HTTP/1.1" 200 371
74.125.184.86 [11/May/2012:09:47:58 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78
74.125.184.37 [11/May/2012:09:47:59 0500] "GET /pngs/185.png HTTP/1.1" 200 371
74.125.184.38 [11/May/2012:09:51:17 0500] "GET /pngs/223.png HTTP/1.1" 200 380
74.125.184.94 [11/May/2012:09:51:24 0500] "GET /cgibin/getfile.pl HTTP/1.1" 200 78

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #50

EULA LEGALESE

● EULA FUN
● Bouncer clicks dialogs
● Our submitted app pops

up a EULA dialog
● Bouncer agrees to our

EULA?!?!
● “You agree you are not

Bouncer”, Bouncer
will click yes! Liar!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #51

AREAS WE SKIMPED ON

● Areas to explore further
● Static analysis by Bouncer
● Taint propagation disruption

● Challenges
● Time, effort
● Clean feedback loop

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #52

STATIC ANALYSIS

● Did submit rageinthecage once
● Still ran in Bouncer?!?
● But probably flagged.

● One would expect a static analysis
stage to short-circuit dynamic run
● But dynamic info may still be useful to Google

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #53

STATIC ANALYSIS

● Sometimes the APK never calls back
● Presumably this means it wasn't dynamically tested
● The guess is it fails some static detection

● One inferred signature: “/system/bin”
● App with “/system/bin/ls” in it never called back
● But did call back when string was constructed

dynamically!

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #54

TAINT TRACKING

● Taint tracking!
● Example use case:

● Snarf contact data and send over the network
● Write “signature” to flag such suspicious

● Depends on propagating taint
● How to disrupt taint propagation?

● Reflect/filter data off/through interfaces that do not
track taint metadata

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #55

TAINT DISRUPTION

● Tricky interfaces to propagate through
● Android's SharedPrefs
● Android's Binder IPC
● Android's LogCat interface
● Java's DirectBuffer interface

● Implemented these “taint breakers”
● Not enough testing to conclude which

were effective though

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #56

OPERATING PLAN

● Diagnosis
● Intro to Bouncer and Google Play

● Exploratory surgery
● Fingerprinting Bouncer and its environment

● Open surgery
● Abusing Bouncer in all sorts of fun ways

● Suture and close
● How Google can fix up Bouncer

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #57

WHAT CAN GOOGLE DO

● Some easy stuff
● eg. hide strings, emulator identifiers, etc

● Some medium stuff
● eg. diversify IP ranges (re-use Safe Browsing

crawling infrastructure)

● Some hard stuff
● eg. prevent a sufficiently convincing model of a real

user's Android device

● Generally, avoid being an oracle

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #58

WHAT CAN GOOGLE DO

● Dynamic analysis is HARD.
● That part of Bouncer will never be perfect
● So, attack the problem from a different angle

● Dynamic analysis portion of Bouncer
only looks at the submitted app

● There's a lot of metadata related the
app submission that Google judges
● eg. Charlie got his wife's CC rejected since he used

the same IP to sign up for a subsequent account

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #59

WHAT CAN GOOGLE DO

CODE SIGNING!!!
● Over two years later,

still no code signing
● Static and dynamic

analysis suddenly
becomes less horrible

● Good for exploit
mitigation too

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #60

FINAL THOUGHTS

● Bouncer doesn't have to be perfect to
be useful
● It will catch crappy malware
● It won't catch sophisticated malware
● Same as AV, IDS, <your favorite security tech>

● How much does Bouncer raise the
bar?
● Currently: not much
● Future: hopefully more?

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #61

GREETZ

● Special thanks
● Dr. Valasek, Dr. Trumpbour, and Dr. Jimbo

● Greetz
● #busticati
● redpantz, jlamer, deft, redpig, krnlpool, bliss,

nelhage, taviso, twiz, rocky, larry, deft, thing2, drb
● Space Pope

Dissecting the Android Bouncer – Jon Oberheide / Charlie Miller – SummerCon 2012 Slide #62

EOF

Jon Oberheide
@jonoberheide

jon@oberheide.org

Charlie Miller
@0xcharlie

cmiller@openrce.org

QUESTIONS?

mailto:jon@oberheide.org
mailto:cmiller@openrce.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

