
JON OBERHEIDE
DUO SECURITY

EXPLOITING THE LINUX KERNEL:
MEASURES AND COUNTERMEASURES

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #2

INTRODUCTION

• Who are you?
• Jon Oberheide
• I enjoy the Linux kernel

• What is this?
• High-level look at Linux kernel mitigations
• What has changed with respect to exploitation
• Both on vanilla and on hardened kernels
• SPOILER: not as depressing as Chris/Tarjei's talk!

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #3

WHY LINUX?

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #4

IN THE ENTERPRISE

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #5

MOBILE AND EMBEDDED

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #6

LUNATICS ON DESKTOPS

“The sound doesn't work on my Linux
desktop for security reasons”

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #7

AGENDA

• Vanilla kernel mitigations

• Hardened kernel mitigations

• Future mitigations

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #8

WHY UPSTREAM SECURITY FAILS

A misguided view of security...although
Linus has been getting better recently.

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #9

LINUX KERNEL SECURITY IN THE 2000s

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #10

DISTRO PROGRESS: RHEL

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #11

DISTRO PROGRESS: UBUNTU

THE NEW
RELEASE HAS
MORE GREEN!

But what's actual
relevant to kernel
exploitation?

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #12

ONLY A HANDFUL RELEVANT TO KERNEL

Reducing attack surface

Mitigating vuln classes

Plugging info leaks

Hampering exploitation

• Stack protector (2008)
• mmap_min_addr

(2008)

• RO/NX for kernel
text/data (2008, 2011)

• Packet family
blacklisting (2011)

• Syscall filtering
(2012)

• kptr_restrict (2011)
• dmesg_restrict (2011)
• kallsyms (2011)
• slabinfo (2011)

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #13

MMAP_MIN_ADDR MITIGATION

• NULL pointer dereferences
• Used to be very exploitable

on Linux kernels
• mmap payload at NULL page, trigger

• mmap_min_addr
• Limits lowest allow mmap region
• Can't map the NULL page anymore

• (Mostly) mitigated in 2008
• Tarjei: Win kernel in 2011?!?

0xffffffff

user

kernel

0xc0000000

0x00000000 NULL page

func pointer

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #14

FUN EXPLOITS IN PACKET FAMILIES

• Linux kernel will happily load ancient, obsolete,
unmaintained packet family modules
• Opens up HUGE attack surface
• Just call socket(2) from unprivileged app

• Exploit-o-rama
• Econet - LAN protocol from 1981
• RDS - Proprietary transport protocol for Oracle
• CAN - Internal broadcast bus in automobiles

• Distros _finally_ started blacklisting old modules

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #15

KERNEL SYMBOLS

• Kernel symbols
• Favorite example of upstream kernel dysfunction
• Most kernel exploits depend on them

• Although sometimes out of convenience than necessity
• prepare_kernel_cred/commit_creds combo

• Exported through world-readable /proc/kallsyms

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #16

TRYING TO RESTRICT KALLSYMS

• Recently, an attempt to make it non-
world readable
• What a concept!

• This LKML thread is full of gold:

• For a simple one-liner patch:

[PATCH] kernel: make /proc/kallsyms mode 400 to
reduce ease of attacking

- proc_create("kallsyms", 0444, NULL, &kallsyms_operations);
+ proc_create("kallsyms", 0400, NULL, &kallsyms_operations);

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #17

LIFECYCLE OF A SECURITY PATCH ON LKML

“Hey, check out this totally
reasonable security
enhancement!” “Sounds reasonable, but we

should probably fix X, Y, and Z
also!”

“Yeah, but if we do X, Y, and Z,
we should probably boil the ocean
too while we're at it!”

“Boiling the ocean is crazy talk,
this will never work.”

“...I give up.”

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #18

“I GUESS I'LL REVERT IT”

• In this case, the patch was accepted!
• For a couple days...
• Until a user reported that

the change broke klogd
• Linus: “I guess I'll revert it”

• So, the security patch that exposed a
bug in an unmaintained log daemon
was reverted...
• Ubuntu included a slightly different kallsyms

restriction in their next release

ksyms = fopen(KSYMS, "r");
if (ksyms == NULL) {
 ...
 fclose(ksyms);
 return 0;
}

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #19

KALLSYMS ON LATEST UBUNTU

• Ubuntu LTS 12.04 (in final beta)
• Privileged user

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #20

KALLSYMS ON LATEST UBUNTU

• Ubuntu LTS 12.04 (in final beta)
• Unprivileged user

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #21

KSYM SOURCES

• Thwarted!
• Where else are ksyms available?

• System.map in /boot, /usr/src/linux, /lib/modules
• vmlinux in /boot, /usr/src/linux, /usr/lib/debug

• /me shakes fist at Kees!

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #22

KSYMS FROM VMLINUZ

• One last local source
• The vmlinuz kernel image itself in /boot
• Compressed tokenized symbol table for the kernel

internal resolution...not pretty to extract!
• Even legit debug tools fail to find vmlinuz ksyms

• How to find these automatically?
• ksymhunter
• https://github.com/jonoberheide/ksymhunter

https://github.com/jonoberheide/ksymhunter

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #23

KSYMHUNTER

• ksymhunter on Ubuntu LTS 12.04

• Can't Ubuntu fix this with a chmod?
• Yes...but no...other “unfixable” ways to get ksyms
• All distros run the same stock binary kernel image

• ksymhunter supports remote symbol
lookups for common distros/kernels

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #24

CURRENT STATE OF KERNEL EXPLOITATION

• A decade ago...
• Only required a write4 to escalate privileges

• How about in 2012 with all of those
recent kernel mitigations?
• Still only a write4!
• And in many cases, even a weaker null write will

work just fine

• Let's show this on Ubuntu 12.04

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #25

USING A WRITE4 AGAINST UBUNTU 12.04

• ksymhunt for apparmor_ops
• apparmor_ops at 0xffffffff81c62fa0

• Pick any of the ~180 security ops function
pointers to overwrite
• Say, ptrace_access_check

• mmap privesc payload in userspace
• ksymhunt for prepare_kernel_cred, commit_creds

• Trigger the poisoned func ptr
• In this case by ptrace'ing a process

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #26

NULL WRITE WORKS TOO

• Can use weaker NULL write primitive
• Partial overwrite of high order bytes of a fptr

• Or, without a partial overwrite
• ksymhunt for mmap_min_addr
• Reset mmap_min_addr to 0 with the NULL write
• mmap privesc payload at NULL page
• Overwrite fptr with NULL write
• Trigger fptr to get code exec at NULL page

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #27

VANILLA SUMMARY

• Current upstream mitigations are
incomplete
• A write4 primitive is still as effective as it was a

decade ago

• Upstream dysfunction is biggest
hurdle to Linux kernel security
• Brave souls get rejected upstream, push things into

distros like Ubuntu, then hope for later upstream
acceptance

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #28

AGENDA

• Vanilla kernel mitigations

• Hardened kernel mitigations

• Future mitigations

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #29

ON TO A HARDENED KERNEL

• How about a modern hardened kernel
with PaX and grsecurity?

• A few of the relevant mitigations
• KERNEXEC, UDEREF, HIDESYM, MODHARDEN,

LOCKOUT, TPE, RANDKSTACK, REFCOUNT,
USERCOPY, STACKLEAK

• More recently, via gcc plugins
• kernexec, constify, stackleak, overflow

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #30

THE PAX TEAM

Visual approximation of pipacs

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #31

PAX VS WRITE4

• How does PaX fare against a write4
primitive?
• KERNEXEC

• Can't modify or introduce new code into kernel memory
• UDEREF

• Can't dereference any userspace pointers (whether code
or data accesses)

• HIDESYM
• Can't discover any useful addresses or ksyms

that could be used during exploitation

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #32

NEED TO KNOW SOMETHING

• So, write4 is pretty useless in the dark
• One way: arbitrary kmem disclosure

• procfs (2005), sctp (2008), move_pages (2009),
pktcdvd (2010)

• Just dump a bunch arbitrary kmem
• But these are rare!
• And in many instances, mitigated by grsec/PaX

• So far, busted by PaX

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #33

STACKJACKING

• In 2011, we came up with the
stackjacking technique

• Combine primitives to defeat PaX
• Arb write + kstack mem disclosure → arb read
• Arb write + arb read → game over

• Kstack mem disclosures are relatively
common unlike arbitrary reads
• WTF is a kstack mem disclosure?

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #34

WHAT'S A KSTACK MEM DISCLOSURE?

.

.

.

1) process
makes syscall
and leaves
sensitive data
on kstack

2) kstack is reused
on subsequent
syscall and struct
overlaps with
sensitive data

foo.baz

sensitive data

kstack frame

foo.bar

struct foo {
 uint32_t bar;
 uint32_t leak;
 uint32_t baz;
};

syscall() {
 struct foo;
 foo.bar = 1;
 foo.baz = 2;
 copy_to_user(foo);
}

foo.leaksensitive data

3) foo struct is copied to
userspace, leaking 4
bytes of kstack through
uninitialized foo.leak
member

kstack frame

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #35

KSTACK SELF-DISCOVERY

• If we can leak an pointer
to the kstack off the kstack,
we can calculate the base
address of the kstack

.

.

.

0xcdef1234

kstack frame

We call this kstack self-discovery

kstack_base = addr & ~(THREAD_SIZE – 1);

kstack_base = 0xcdef1234 & ~(8192 – 1)

kstack_base = 0xcdef0000 0xcdef0000

0xcdef2000

0xcdef1234
0xdeadbeef

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #36

HOW TO GET AN ARBITRARY READ

• We now have a known reference point
in kernel memory, our own kstack
• Couple of complicated techniques to turn the

write+kleak into an arbitrary read
• Obergrope and Rosengrope techniques

• See SummerCon slides for full details

http://jon.oberheide.org/files/stackjacking-summercon11.pdf

http://jon.oberheide.org/files/stackjacking-summercon11.pdf

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #37

PAX RESPONSE

• Moved thread_info off kstack
• Kills Rosengrope technique

• RANDKSTACK enhancements
• Randomizes kesp on each syscall
• Make Obergrope a bit unreliable

• USERCOPY enhancements
• Hardened to prevent task_struct → userspace

• STACKLEAK plugin
• Clears the kstack after each syscall

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #38

PIPACS IS GREAT AT RUINING PARTIES

• Stackjacking technique on life support
thanks to the fury of pipacs
• But lives on as an effective technique against

vanilla kernels...probably for a long long time.
• ^ Why you should focus on exploiting PaX, then

reap the years of benefits against vanilla

• A good example of scary-thorough
mitigation response

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #39

KERNEL STACK OVERFLOWS

• Stackjacking against PaX got me hot on
kernel stack bizness
• Heap research is for suckers

• Discovered that stack overflows are
exploitable in the Linux kernel
• _Not_ stack-based buffer overflows

• Again, pipacs quickly ruined my kernel
stack overflow party :-(

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #40

METADATA ON THE KERNEL STACK

unused

grows down

thread_info

start of stack

current_thread_info

struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 void __user *sysenter_return;
#ifdef CONFIG_X86_32
 unsigned long previous_esp;
 __u8 supervisor_stack;
#endif
 int uaccess_err;
};

thread_info struct is at the base of kstack!

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #41

EXPLOITING STACK OVERFLOWS

start of stack

current_thread_info

If we control an incremental (eg.
recursion) or allocation (eg. alloca)
stack overflow in the Linux kernel, we
can cause our thread's kernel stack to
collide with the thread_info structure.

thread_info

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #42

TARGETING THREAD INFO

• What would the overflow collide with?
• uaccess_err

• No security impact,
but safe to clobber

• restart_block
• A function pointer, BINGO!

• addr_limit
• Define u/k boundary, BONGO!

• preempt_count .. task_struct
• Pretty sensitive, avoid clobbering

struct restart_block {
 long (*fn)(struct restart_block *);
 union {} /* safe to clobber */
};

access_ok()/__range_not_ok():

Test whether a block of memory
is a valid user space address.

addr + size > addr_limit.seg

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #43

CONTROLLING THE CLOBBER

• Can we control the clobbering value?
• Incremental overflow: tip of the stack, unlikely
• Allocation overflow: VLA values, maybe

• Good news, don't need much control!
• Two categories:

• Value represents a kernel space address
• Value > TASK_SIZE

• Value represents a user space address
• Value < TASK_SIZE

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #44

CLOBBER TO CODE EXEC

• If value < TASK_SIZE
• Clobber restart_block fptr with userspace value
• mmap privesc payload at that address in userspace
• Trigger fptr via syscall(SYS_restart_syscall);

• If value > TASK_SIZE
• Clobber addr_limit with a high kernel space value
• You can now pass copy_from_user()/access_ok()

checks up to that kernel address
• So we can read(2) from a fd and write into kmem

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #45

STACK OVERFLOW EXPLOITATION

• thread_info clobbering technique
• Will work in the common case for Linux kernel stack

overflows (recursion or VLAs)

• More advanced stack overflow
techniques are possible
• See Infiltrate slides for half-nelson.c exploit

http://jon.oberheide.org/files/infiltrate12-thestackisback.pdf

http://jon.oberheide.org/files/infiltrate12-thestackisback.pdf

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #46

AGAIN, PIPACS HURTS MY FEELINGS

• STACKLEAK plugin enhancements
• Instruments any functions with alloca functionality

with sanity checks to prevent stack overflows.

• Recursive vulns should still be in play
though
• Especially on vanilla kernels
• Again, target PaX and you're reap the rewards

against vanilla

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #47

HARDENED SUMMARY

• Write primitive not sufficient against
modern PaX-hardened kernel
• Need info leak, but can be rare

• Hardened kernel years ahead of
vanilla in mitigations

• A couple new exploitation techniques
• Stackjacking and stack overflows
• Promptly demolished by the PaX team
• But still very applicable to vanilla kernel

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #48

AGENDA

• Vanilla kernel mitigations

• Hardened kernel mitigations

• Future mitigations

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #49

FUTURE MITIGATIONS

• Within the next few months
• SMEP on Intel's Ivy-Bridge
• More GCC plugins for PaX (overflow)

• Within a year or two
• More NX/RODATA/const progress
• More address leakage plugging
• In-kernel ASLR

• Within a decade
• KERNSEAL ;-P

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #50

SMEP IN INTEL IVY-BRIDGE

http://theinvisiblethings.blogspot.com/2011/06/from-slides-to-silicon-in-3-years.html

Supposedly proposed to Intel by Joanna/ITL in 2008:

http://theinvisiblethings.blogspot.com/2011/06/from-slides-to-silicon-in-3-years.html

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #51

SMEP ILLUSTRATED

Simply put: SMEP blocks the kernel
from unsafely dereferencing code in userspace

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #52

SMEP MITIGATION

• Common exploit flow
• Use write primitive to modify a

function pointer in kmem
• Mmap privesc payload in

userland
• Trigger function pointer and

redirect control flow to userspace

• SMEP blocks this userland
code access from ring0

0xffffffff

user

kernel

0xc0000000

0x00000000

payload

func pointer

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #53

SMEP WEAKNESSES

• ROP beats SMEP
• Also, writing payload into W+X kmem
• Also, stackjacking

• Doesn't prevent user data derefs (r/w)
• Basically a subset of PaX's UDEREF
• But at least hardware supported (w/o segmentation)

• Haven't seen SMEP in the wild yet
• Windows 8 support? Yes according to Tarjei.
• But Ivy-Bridge CPUs just launched 2 days ago (April 23rd,

2012)
http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #54

CONCLUSIONS

• Not a whole lot has changed
• Offense drives defense drives offense, etc
• But when there's no defense...

• Vanilla
• As usual, years behind in mitigations
• write4 (or weaker) sufficient a few years to come
• Upstream resistance, lack of completeness

• PaX
• As usual, a crystal ball into the future

Exploiting the Linux Kernel – Jon Oberheide – SyScan 2012 Slide #55

EOF

Jon Oberheide
jon@oberheide.org

@jonoberheide

QUESTIONS?

mailto:jon@oberheide.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

