EXPLOITING THE LINUX KERNEL.:
MEASURES AND COUNTERMEASURES

JON OBERHEIDE
DUO SECURITY

INTRODUCTION 5

- Who are you?

- Jon Oberheide
- | enjoy the Linux kernel

- What is this?

- High-level look at Linux kernel mitigations

- What has changed with respect to exploitation

- Both on vanilla and on hardened kernels

- SPOILER: not as depressing as Chris/Tarjei's talk!

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #2

WHY LINUX? &

YUSOLOWS?

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #3

IN THE ENTERPRISE &

'
Jrpy L
] rm

L]

LB " i -
TR T G

waws I TRes i
IR T tal L I

s r'?i _-— 11_-'7_.

e - —r
=]

we, UXITIE e Tai

LML I YAYAEE Py

VIR [
et ey
9

fOTONE) ¢

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #4

MOBILE AND EMBEDDED &

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #5

LUNATICS ON DESKTOPS &

“The sound doesn't work on my Linux
desktop for security reasons”

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #6

AGENDA é

- Vanilla kernel mitigations

- Hardened kernel mitigations

- Future mitigations

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #7

WHY UPSTREAM SECURITY FAILS é

Btw, and you may not like this, since you are so focused on security, one
reason I refuse to bother with the whole security circus 1s that I think
1t glorifies - and thus encourages - the wrong behavior.

It makes "herces" out of security people, as 1f the people who don't just
fix normal bugs aren't as important.

In fact, all the boring normal bugs are way_ more important, just because
there's a lot more of them. I don't think some spectacular security hole
should be glorified or cared about as being any more "special" than a
random spectacular crash due to bad locking.

A misguided view of security...although
Linus has been getting better recently.

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #8

LINUX KERNEL SECURITY IN THE 2000s

6]

Vulnerabilities by CVSS severity

120

100

60

60

40

20

B 9

2000 20017 2002 2003 2004 2005 2006 2007 2008 @ 2009

26

1)

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #9

DISTRO PROGRESS: RHEL

Fed Hat Enterprise Linux
Features 2 4 5 &

2002 Oct 2005 Feb 2007 Mar 2010 MNew

Firewall by default

Signed updates required by default
M¥ emulation using segment limits by default

Support for Position Independent Executables (PIE)
Address Randomization (ASLR) for Stack/mmap by default
ASLR for vDSO (if vDSO enabled)

Support for HULL peointer dereference protedtion
MN¥ for supported processors/kernels by default

Support for bleck medule loeading via cap-beund sysctl tunable
or fproc/sys/kernelfcap-bound

Restricted access to kernel memory by default

Support for SELinux

SELinux enabled with targeted policy by default

glibc heap/mermeary checks by default

Support for FORTIFY SOURCE, used on selected packages
Support for ELF Data Hardening

All packages compiled using FORTIFY_SOURCE

All packages compiled with stack smashing protection
SELinux Executable Memeary Protection

glibc pointer encryption by default
Enmabled NULL pointer dereference protection by default

Enabled write-protection for kernel read-only data structures
by default

FORTIFY_SOURCE extensions including C4++ coverage

Support for block module loading via modules_disabled
sysctl tunable or /prog/sys/kernel/medules_disabled

Support for SELinux to restrict the leading of kernel modules
bv unprivileged processes in confined dermains
Enabled kernel -fstack-protector buffer overflow detection by default

Support for sVirt labelling te provide security ever guest instances

Support for SELinux to confine users' access on a system

Support for SELinux to test untrusted content via a sandbox
Support for SELinux X Access Control Extension (XACE)

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #10

DISTRO PROGRESS: UBUNTU

8.04 LTS (Hardy 10.04LTS 11.04 (Natky 11.1a (anelrlc 1a.0aLTs
featurs (Preclse
Herond fLucld Ly Harw hall ocelatd Pangalind

A - - A L S L
pazamord hazhing | W I A S
S caokles - 1 ! | |

Fllesystem

Capabilities -- kernel kernel kernel kernel
cortousic e 1 | I S

FR_ZET_SECCOMP kernel kernel kernel kernel kernel

o S ES S S
ZELInux unkwerse unkwerse unkwerse unkwerse unkwerse

ALK = kernel kernel kernel kernel

Encrypted LvM alt Installer alt Installer alt Installer alt Installer alt Installer

eCrrptfs . ~{Private ar -, ~{Private ar -, ~{Private ar -, ~{Private or -, T H E N E W
filenam es filenames filenames filenam es

Stack Protector
. RELEASE HAS
sctaze

MORE GREEN!
Exec ASLR L]
brk &5LR
WDED ASLR
Eullt as FIE

Eullt v Ith FartHy
Source

Eullt wth RELRO
Eulltwith
EIND_HOW
Mon-Executable
Mem ory

terog/§pldim aps
protecklan

But what's actual
relevant to kernel
exploitation?

Zrmlink restrictlons

Hardlink restrictions

ptrace scope

e vt] ST) ST) S

drop
CAP_SrS MODULES

Read-only data
sectlons

Elock module loading sysctl sysctl sysctl sysctl

Stack protector
Muodule ROJNE -

Kernel address
Display Restrictlon

Elacklist Rare
Frotocols

Frscall Fllkering -

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #11

ONLY A HANDFUL RELEVANT TO KERNEL é

Mitigating vuln classes Hampering exploitation

. Stack protector (2008) ~ RO/NXfor kernel
text/data (2008, 2011)

- mmap_min_addr
(2008)

Plugging info leaks
- kptr_restrict (2011)

Reducing attack surface

- Packet family
blacklisting (2011) - dmesg_restrict (2011)
- Syscall filtering - kallsyms (2011)
(2012) . slabinfo (2011)

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #12

MMAP _MIN_ADDR MITIGATION é

Oxffffffff

NULL pointer dereferences

kernel
Used to be very exploitable func pointer
on Linux kernels 0xc0000000

mmap payload at NULL page, trigger
- mmap_min_addr

Limits lowest allow mmap region user

- Can't map the NULL page anymore
- (Mostly) mitigated in 2008

- Tarjei: Win kernel in 20117?!? 0x00000000 ™ NULL page

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #13

FUN EXPLOITS IN PACKET FAMILIES é

- Linux kernel will happily load ancient, obsolete,
unmaintained packet family modules

- Opens up HUGE attack surface
- Just call socket(2) from unprivileged app
- Exploit-o-rama
Econet - LAN protocol from 1981

RDS - Proprietary transport protocol for Oracle
- CAN - Internal broadcast bus in automobiles

- Distros _finally started blacklisting old modules

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #14

KERNEL SYMBOLS é

- Kernel symbols

Favorite example of upstream kernel dysfunction

Most kernel exploits depend on them

- Although sometimes out of convenience than necessity
- prepare_kernel cred/commit_creds combo

Exported through world-readable /proc/kallsyms

jono@apollo ~ $ 1ls -1 /proc/kallsyms

-r--r--r-- 1 root root 0 Apr 25 03:23 /proc/kallsyms

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #15

TRYING TO RESTRICT KALLSYMS é

- Recently, an attempt to make it non-
world readable

- What a concept!

- This LKML thread is full of gold:

[PATCH] kernel: make /proc/kallsyms mode 400 to
reduce ease of attacking

- For a simple one-liner patch:

- proc create("kallsyms", 0444, NULL, é&kallsyms operations);
+ proc create("kallsyms", 0400, NULL, &kallsyms operations);

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #16

LIFECYCLE OF A SECURITY PATCH ON LKML é

“Hey, check out this totally
reasonable security

nh " “
enhancement Sounds reasonable, but we

should probably fix X, Y, and Z
also!”

“Yeah, but if we do X, Y, and Z,
we should probably boil the ocean
too while we're at it!”

“Boiling the ocean is crazy talk,
this will never work.”

“...I give up.”

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #17

“I GUESS I'LL REVERT IT” é

- In this case, the patch was accepted!

- For a couple days... ksyms = fopen (KSYMS, "r");

. 1f (ksyms == NULL) {
- Until a user reported that

the change broke klogd felose (ksyns) ;

return 0;

- Linus: “l guess I'll revert it”

- S0, the security patch that exposed a
bug in an unmaintained log daemon
was reverted...

- Ubuntu included a slightly different kallsyms
restriction in their next release

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #18

KALLSYMS ON LATEST UBUNTU é

- Ubuntu LTS 12.04 (in final beta)
- Privileged user

root@ubuntu: /home/vm# id

uid=0(root) gid=8(root) groups=8(root)

root@ubuntu: /home/vm# cat /[proc/kallsyms | grep commit_creds
FEFfffff81091660 T

ffffffff8lagfedd r __ksymtab_

ffffffff8l1aasf70 r _ kcrctab_

ffffffffel1ab46d2 r _ kstrtab_
root@ubuntu: /home/vmi# |

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #19

KALLSYMS ON LATEST UBUNTU é

- Ubuntu LTS 12.04 (in final beta)
- Unprivileged user

vm@ubuntu:~S$ id
uid=1080(vm) gid=1008(vm) groups=1000(vm),4(adm),24(
lugdev),109(1lpadmin),124(sambashare)

vm@ubuntu:~$ cat /proc/kallsyms | grep commit_creds
O00000000000000 T
O00000000000000 r
O00000000000000
0000000000000000 r
vm@ubuntu:~$ [

__ksymtab_
kcrctab
kstrtab

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #20

KSYM SOURCES ﬁ

- Thwarted!
- Where else are ksyms available?

- System.map in /boot, /usr/src/linux, /lib/modules
- vmlinux in /boot, /usr/src/linux, /usr/lib/debug

vm@ubuntu:~% cat /boot/System.map-3.2.0-20-generic | grep commit_creds

cat: /boot/System.map-3.2.0-20-generic: Permission denied

- /me shakes fist at Kees!

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #21

KSYMS FROM VMLINUZ 5

- One last local source

- The vmlinuz kernel image itself in /boot

- Compressed tokenized symbol table for the kernel
internal resolution...not pretty to extract!

- Even legit debug tools fail to find vmlinuz ksyms

-T'Ww-r--r-- 1 root root 4965584 Mar 27 16:37 vmlinuz

- How to find these automatically?

- ksymhunter
- https://github.com/jonoberheide/ksymhunter

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #22

https://github.com/jonoberheide/ksymhunter

KSYMHUNTER ﬁ

- ksymhunter on Ubuntu LTS 12.04

vm@ubuntu:~$./ksymhunter commit _creds 2>/dev/null
[+] trying to resolve commit_creds...

[+] resolved commit_creds using /boot/vmlinuz-3.2.0-20-generic
[+] resolved commit_creds to Oxffffffff81891660

- Can't Ubuntu fix this with a chmod?

- Yes...but no...other “unfixable” ways to get ksyms
- All distros run the same stock binary kernel image

- ksymhunter supports remote symbol
lookups for common distros/kernels

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #23

CURRENT STATE OF KERNEL EXPLOITATION é

- A decade ago...

- Only required a write4 to escalate privileges

- How about in 2012 with all of those
recent kernel mitigations?

- Still only a write4!

-+ And in many cases, even a weaker null write will
work just fine

- Let's show this on Ubuntu 12.04

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #24

USING A WRITE4 AGAINST UBUNTU 12.04 é

- ksymhunt for apparmor_ops
- apparmor_ops at Oxffffffff81c62fal

- Pick any of the ~180 security ops function
pointers to overwrite

- Say, ptrace _access check
* mmap privesc payload in userspace

- ksymhunt for prepare_kernel cred, commit_creds
- Trigger the poisoned func ptr

- In this case by ptrace'ing a process

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #25

NULL WRITE WORKS TOO 5

- Can use weaker NULL write primitive

- Partial overwrite of high order bytes of a fptr

- Or, without a partial overwrite

- ksymhunt for mmap_min_addr

- Reset mmap_min_addr to O with the NULL write
- mmap privesc payload at NULL page

- Overwrite fptr with NULL write

- Trigger fptr to get code exec at NULL page

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #26

VANILLA SUMMARY é

- Current upstream mitigations are
incomplete

- A write4 primitive is still as effective as it was a
decade ago

- Upstream dysfunction is biggest
hurdle to Linux kernel security

- Brave souls get rejected upstream, push things into
distros like Ubuntu, then hope for later upstream
acceptance

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #27

AGENDA é

- Vanilla kernel mitigations

- Hardened kernel mitigations

- Future mitigations

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #28

ON TO A HARDENED KERNEL é

- How about a modern hardened kernel
with PaX and grsecurity?

- A few of the relevant mitigations

- KERNEXEC, UDEREF, HIDESYM, MODHARDEN,
LOCKOUT, TPE, RANDKSTACK, REFCOUNT,
USERCOPY, STACKLEAK

- More recently, via gcc plugins

- kernexec, constify, stackleak, overflow

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #29

THE PAX TEAM

Visual approximation of pipacs

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #30

PAX VS WRITE4 &

- How does PaX fare against a write4
primitive?
KERNEXEC
- Can't modify or introduce new code into kernel memory

UDEREF

- Can't dereference any userspace pointers (whether code
or data accesses)

HIDESYM

- Can't discover any useful addresses or ksyms
that could be used during exploitation

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #31

NEED TO KNOW SOMETHING ﬁ

- S0, write4 is pretty useless in the dark

- One way: arbitrary kmem disclosure

- procfs (2005), sctp (2008), move pages (2009),
pktcdvd (2010)

- Just dump a bunch arbitrary kmem

- But these are rare!
- And in many instances, mitigated by grsec/PaX

- So far, busted by PaX

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #32

STACKJACKING &

- In 2011, we came up with the
stackjacking technique

- Combine primitives to defeat PaX

- Arb write + kstack mem disclosure — arb read
- Arb write + arb read — game over

- Kstack mem disclosures are relatively
common unlike arbitrary reads

- WTF is a kstack mem disclosure?

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #33

WHAT'S A KSTACK MEM DISCLOSURE? é

v

kstack frame

sensitive data

1) process
makes syscall
and leaves
sensitive data
on kstack

v

kstack frame

\
foo.bar
foo.leak —
foo.baz

S

2) kstack is reused
on subsequent
syscall and struct
overlaps with
sensitive data

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012

struct foo {
uint32 t bar;
uint32 t leak;
uint32 t baz;

}i

syscall() {
struct foo;
foo.bar = 1;
foo.baz = 2;
copy to user(foo);

}

3) foo struct is copied to
userspace, leaking 4
bytes of kstack through
uninitialized foo.leak
member

Slide #34

KSTACK SELF-DISCOVERY é

If we can leak an pointer

Oxcdef2000
to the kstack off the kstack, v
we can calculate the base N kstack frame
Xcae
address of the kstack —» Oxdeadbeef

kstack_base = addr & ~(THREAD_SIZE -1); L__ oxcdef1234

kstack base = Oxcdef1234 & ~(8192 — 1)

kstack_base = O0xcdef0000 0xcdef0000

We call this kstack self-discovery

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #35

HOW TO GET AN ARBITRARY READ é

- We now have a known reference point
In kernel memory, our own kstack

- Couple of complicated techniques to turn the
write+kleak into an arbitrary read

- Obergrope and Rosengrope techniques

- See SummerCon slides for full details

http://jon.oberheide.org/files/stackjacking-summercon11.pdf

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #36

http://jon.oberheide.org/files/stackjacking-summercon11.pdf

PAX RESPONSE

- Moved thread _info off kstack

- Kills Rosengrope technique

- RANDKSTACK enhancements

- Randomizes kesp on each syscall
- Make Obergrope a bit unreliable

- USERCOPY enhancements

- Hardened to prevent task struct — userspace

- STACKLEAK plugin

- Clears the kstack after each syscall

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012

Slide #37

PIPACS IS GREAT AT RUINING PARTIES é

- Stackjacking technique on life support
thanks to the fury of pipacs

- But lives on as an effective technique against
vanilla kernels...probably for a long long time.

- M Why you should focus on exploiting PaX, then
reap the years of benefits against vanilla

- A good example of scary-thorough
mitigation response

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #38

KERNEL STACK OVERFLOWS é

- Stackjacking against PaX got me hot on
kernel stack bizness

- Heap research is for suckers

- Discovered that stack overflows are
exploitable in the Linux kernel

- _Not_ stack-based buffer overflows

- Again, pipacs quickly ruined my kernel
stack overflow party :-(

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #39

METADATA ON THE KERNEL STACK é

start of stack-» ¢

struct thread info {
struct task_struct *task;
struct exec_ domain *exec _domain;

__u32 flags,
__u32 status;
__u32 cpu;
int preempt count;
mm_segment t addr limit;
struct restart | block restart block;
void _ user *sysenter return;

#ifdef CONFIG_X86_32 unused
unsigned long previous esp;
__u8 supervisor stack;

#endif thread_info

int uaccess err; .
- current thread info—p

grows down

};

thread info struct is at the base of kstack!

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #40

EXPLOITING STACK OVERFLOWS é

start of stack-»

If we control an incremental (eg.
recursion) or allocation (eg. alloca)
stack overflow in the Linux kernel, we
can cause our thread's kernel stack to
collide with the thread_info structure.

Y

current thread info-p- -~

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #41

TARGETING THREAD INFO é

- What would the overflow collide with?

uaccess_err

struct restart block {

No Security impaCt, long (*£n) (struct restart block ¥*);
but safe to clobber union {} /* safe to clobber */
}i
restart_block
- Afunction pointer, BINGO! access_ok()/__range not ok():
addr Iimit Test whether a block of memory

is a valid user space address.

Define u/k boundary, BONGQO!
preempt _count .. task_struct
Pretty sensitive, avoid clobbering

addr + size > addr limit.seg

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #42

CONTROLLING THE CLOBBER é

- Can we control the clobbering value?

- Incremental overflow: tip of the stack, unlikely
- Allocation overflow: VLA values, maybe

- Good news, don't need much control!
- Two categories:

- Value represents a kernel space address
- Value > TASK_SIZE

- Value represents a user space address
- Value < TASK_SIZE

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #43

CLOBBER TO CODE EXEC ﬁ

. If value < TASK SIZE

- Clobber restart_block fptr with userspace value
- mmap privesc payload at that address in userspace
- Trigger fptr via syscall(SYS_restart _syscall);

. If value > TASK SIZE

- Clobber addr_Ilimit with a high kernel space value

- You can now pass copy_from_user()/access_0k()
checks up to that kernel address

- S0 we can read(2) from a fd and write into kmem

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #44

STACK OVERFLOW EXPLOITATION é

- thread_info clobbering technique

- Will work in the common case for Linux kernel stack
overflows (recursion or VLAS)

- More advanced stack overflow
techniques are possible

- See Infiltrate slides for half-nelson.c exploit

http://jon.oberheide.org/files/infiltrate 12-thestackisback.pdf

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #45

http://jon.oberheide.org/files/infiltrate12-thestackisback.pdf

AGAIN, PIPACS HURTS MY FEELINGS é

- STACKLEAK plugin enhancements

- Instruments any functions with alloca functionality
with sanity checks to prevent stack overflows.

- Recursive vulns should still be in play
though

- Especially on vanilla kernels

- Again, target PaX and you're reap the rewards
against vanilla

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #46

HARDENED SUMMARY ﬁ

- Write primitive not sufficient against
modern PaX-hardened kernel

- Need info leak, but can be rare

- Hardened kernel years ahead of
vanilla in mitigations

- A couple new exploitation techniques

- Stackjacking and stack overflows
- Promptly demolished by the PaX team
- But still very applicable to vanilla kernel

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #47

AGENDA é

- Vanilla kernel mitigations

- Hardened kernel mitigations

- Future mitigations

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #48

FUTURE MITIGATIONS

- Within the next few months
- SMEP on Intel's lvy-Bridge
- More GCC plugins for PaX (overflow)
- Within a year or two

- More NX/RODATA/const progress
-+ More address leakage plugging
- In-kernel ASLR

- Within a decade
. KERNSEAL :-P

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012

Slide #49

SMEP IN INTEL IVY-BRIDGE

=

x86, cpu: Enable/disable Supervisor Mode Execution Protection

author Fenghua Tu <fenghua. vufintel. coms

Wed, 11 May Z011 Z23:51:05 +0000 (1l&:51 -0700)
committer H. Peter Anvin <hpaflinux. intel.com:

Wed, 18 May 2011 04:2Z2:00 +0000 (Z1:2Z -0700)

commit de5387adsbPadZZeZdllcddacdflbb3k19c05879
tree efcEllcdfBdefed58d8ec3ci3flbEAR34E20c0E2 tree | snapshot
parent de23c0becfbecal 71c87h3db2B5A032h%a5E06 0 eammit | diff

®BE, cpu: Enable/digable Supervisor Mode Execution Protection

Enable/dizable newly documented SMEP (Superwisor Mode Execution Protection) CPU
feature in kernel. CE4.53MEFP (bit Z0) is 0 at power-on. If the feature is
supported by CPU (¥B86_FEATURE SMEF), enable SMEF by setting CR4.5MEF. New kernel
option nosmep disables the feature even if the feature is supported by CPI.

[hpa: moved the call to setup_smep() until after the wvendor-specific
initialization; that ensures that CPUID features are unmasked. We
will =still run it before we have ugerspace (never mind ucontrolled
userspace).]

Signed-off-by: Fenghua Tu <fenghua.yufintel. com
LEML-EReference: <1305157865-31727-1-git-send-emnail-fenghua.yulintel. com>
Sigmed-off-by: H. Feter Anvin <hpaflinmue. intel. com

Documentation/kernel-parameters, txt diff | blob | history
| I

arch/x86/kernel fopu/conmnon. o diff

Supposedly proposed to Intel by Joanna/ITL in 2008:
http://theinvisiblethings.blogspot.com/2011/06/from-slides-to-silicon-in-3-years.html

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #50

http://theinvisiblethings.blogspot.com/2011/06/from-slides-to-silicon-in-3-years.html

SMEP ILLUSTRATED &

Supervisory Mode Execute Protection (SMEP)

Paged memory Protection Rings

05 system _ translation/permission
memary - - | tables
G PRPCEN = ﬂ|
Sepiesen =HH opn @
s —H Kaemel
i = R e L
""""") 1 = user page

0 = supervisor page Applcatons

+ Ivy Bridge introduces SMEP to help prevent Escalation of
Privilege (EoP) security attacks

- Prevents execution out of untrusted application memory while
operating at a more privileged level

— If CR4.SMEP set to 1 and in supervisor mode (CPL<3), instructions

may not be executed from a linear address for which the user
mode flag is 1

- Available in both 32- and 64-bit operating modes
- SMEP is enumerated via CPUID.7.0.EBX[7]

Simply put: SMEP blocks the kernel
from unsafely dereferencing code in userspace

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #51

SMEP MITIGATION ﬁ

Oxffffffff

- Common exploit flow ool

func pointer

- Use write primitive to modify a ,..0000000
function pointer in kmem

- Mmap privesc payload in X
userland P payload
- Trigger function pointer and User

redirect control flow to userspace

- SMEP blocks this userland
code access from ring0 oxo0000000

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #52

SMEP WEAKNESSES

-

- ROP beats SMEP

Also, writing payload into W+X kmem
Also, stackjacking

- Doesn't prevent user data derefs (r/w)

Basically a subset of PaX's UDEREF
But at least hardware supported (w/o segmentation)

- Haven't seen SMEP in the wild yet

Windows 8 support? Yes according to Tarjei.

But Ivy-Bridge CPUs just launched 2 days ago (April 23rd,
2012)

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #53

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

CONCLUSIONS &

- Not a whole lot has changed

- Offense drives defense drives offense, etc
- But when there's no defense...

- Vanilla

- As usual, years behind in mitigations
- write4 (or weaker) sufficient a few years to come
- Upstream resistance, lack of completeness

- PaX

- As usual, a crystal ball into the future

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #54

EOF 15

QUESTIONS?

Jon Oberheide
jon@oberheide.org
@jonoberheide

Exploiting the Linux Kernel — Jon Oberheide — SyScan 2012 Slide #55

mailto:jon@oberheide.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

