
Remote Fingerprinting and Exploitation of Mail Server Antivirus Engines

Jon Oberheide, Farnam Jahanian
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor, MI 48109
{jonojono, farnam}@umich.edu

Abstract

Vulnerabilities within antivirus engines deployed at
a mail server represent a serious risk to the security of
organizations. If a sophisticated attacker is able to re-
motely probe a mail server and identify the particular
antivirus engine used, he may craft a malformed mes-
sage to exploit the engine with a low risk of detection.
This paper explores how much information is exposed
by these mail servers, how this information could be
used effectively by an attacker, and what can be done
to limit the exposure and reduce the impact of an-
tivirus vulnerabilities. Towards this goal, we introduce
and evaluate three techniques that can expose the ven-
dor and version of antivirus software used by a mail
server: message bouncing, detection probing, and it-
erative refinement. Through a series of experiments,
we determine that over 28% of bounced messages ex-
pose information, 78% of response messages and 16%
of delivered messages leak information through detec-
tion probing, and demonstrate the effectiveness of iter-
ative refinement with a dataset of over 7200 malware
samples and antivirus engines from 10 popular ven-
dors. We also show that the most commonly deployed
mail server antivirus engine is the most vulnerable en-
gine and is one of the top offenders in exposing infor-
mation. Finally, we conclude by suggesting methods of
reducing the amount of exposure and discuss isolation
techniques that may provide greater security.

1 Introduction

Antivirus software is the predominant method of
protecting hosts and last line of defense against ma-
licious software. However, due to the increasing scale

and sophistication of malware, antivirus and its detec-
tion routines have become very complex. In particular,
antivirus engines must be able to parse a vast range of
complex file types, many of which are malformed and
obfuscated to avoid detection. This complexity leads
to the presence of vulnerabilities within the antivirus
software itself which can be exploited by a maliciously
formed input file. Significant numbers of vulnerabili-
ties have been discovered in antivirus engines in re-
cent years. For example, within the first four months
of 2008, twelve vulnerabilities have been reported and
confirmed in the ClamAV antivirus engine [8].

While vulnerabilities in antivirus are of concern
in any deployment model, they are especially severe
when antivirus software is deployed at a mail server
to scan for malicious content and attachments. As
most mail servers will accept delivery from any unso-
licited party on the Internet, an attacker can craft a ma-
liciously formed file designed to exploit an antivirus
engine vulnerability and send it as an attachment to
the target mail server. The resulting exploitation may
compromise the integrity of the entire mail server and
all of its incoming and outgoing email.

In order to craft a malformed attachment to exploit a
specific antivirus engine while maintaining a low risk
of detection, an attacker may elicit feedback from a
mail server to assist in identification of the antivirus
vendor or version used. Towards understanding such a
threat, we introduce three techniques that can expose
information about a mail server’s antivirus software:

1. Message Bouncing: An attacker may address an
email to an invalid recipient mailbox and gain in-
formation from the content and headers of the re-
sulting bounced message.

1

2. Detection Probing: By sending an attachment to
trigger the detection routines of the mail server’s
antivirus engine, the response to the probes may
reveal information about the antivirus engine em-
ployed.

3. Iterative Refinement: Using specially-crafted
attachments or malware samples that are only de-
tected by a particular antivirus engine and no oth-
ers, an attacker may be able to pinpoint the engine
in use.

As each technique may vary in its effectiveness
and risk of detection, we perform three experiments
to evaluate them against real-world targets. We find
that the first technique exposes information in 137 of
483 bounced emails (28.4%). In the second experi-
ment, we employ detection probing with the EICAR
test file [3] and observe an exposure rate of 77.9% of
the response messages and 15.8% of the total deliv-
ered messages. In the last experiment, we successfully
identify the antivirus software used by a University of
Michigan mail server by leveraging over 7200 sam-
ples from the Arbor Malware Library [7], a collection
of ten antivirus engines, and a SMTP feedback mech-
anism.

Additionally, we survey a number of security ad-
ministrators about the antivirus they employ at their
mail servers, which results in two interesting obser-
vations: (1) the antivirus engine which is most com-
monly deployed among the survey participants is the
one that contains the most vulnerabilities of any ven-
dor, and (2) many administrators may be unaware of
the vulnerabilities in their antivirus engines and the
associated risk when deployed in a mail server envi-
ronment.

As detailed information on an antivirus engine may
benefit a malicious party in their attack on a mail
server, reducing the amount of information leaked and
eliminating the feedback mechanisms that enable the
exposure are significant steps in reducing the risk of
the threat. However, we also explore alternate ap-
proaches to provide isolation between the mail server
and its antivirus engine. By introducing a layer of iso-
lation, we can reduce the impact of the underlying vul-
nerabilities within the antivirus software and increase
the overall security of the mail server.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

ClamAV

McAfee

TrendMicro

Symantec

Kaspersky

F-Secure

Avast
BitDefender

AVG
F-Prot

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

AV Vendors

Severity of CVE/NVD Antivirus Vulnerabilities
Low Severity

Medium Severity
High Severity

Figure 1. Number of vulnerabilities reported
in the National Vulnerability Database (NVD)
for ten antivirus vendors between 2005 and
June 2008.

2 Complexity of Antivirus Software

Antivirus software is designed to detect malware
and protect desktops, servers, mobile devices, and
other computing assets against malicious attack. How-
ever, effectively achieving these design goals is a chal-
lenging task due to the vast ecosystem of malicious
threats. The amount and sophistication of malware is
ever-increasing as antivirus vendors scramble to adapt
their products to address rapidly evolving threats. De-
veloping the antivirus software to adequately protect
against these threats leads to a considerable amount of
complexity in terms of code base size, detection al-
gorithms, and parsing routines. This complexity can
lead to an increased risk of vulnerabilities within the
antivirus software itself.

To provide effective protection, antivirus must pos-
sess a wide breadth and a significant depth of visibility
into suspicious files. Therefore, the antivirus software
must parse an enormous number of complex file types
including archives, office documents, and any other
format that may potentially contain malicious code.
In addition, as malware authors employ exotic exe-
cutable packers, mangled and malformed file headers,
and obfuscation techniques to thwart static analysis,
antivirus software must be able to process and analyze
“the worst of the worst” as far as file formats are con-
cerned.

Unfortunately, safely parsing these complex file
types is a daunting challenge. Indeed, even the appli-
cations which create such files often have problems in

2

parsing their own file types [1, 6]. Simple program-
ming mistakes (integer overflows, off-by-one errors,
unbounded buffers), misinterpretations of file format
specifications, and many other issues can lead in un-
safe parsing routines which may result in vulnerabili-
ties within the antivirus software. Attackers may craft
a malformed file designed to exploit the vulnerabili-
ties within the parsing routines when it is analyzed by
the antivirus software, often leading to the execution
of arbitrary malicious code.

Indeed, numerous vulnerabilities have been discov-
ered in the antivirus engines of nearly every vendor.
Figure 1 shows the number of vulnerabilities reported
in the National Vulnerability Database [8] across the
product lines of ten popular antivirus vendors between
2005 and June 2008. It is important to note that the
majority of the vulnerabilities are a high severity risk
(as determined by CVSS score) which often results in
a full compromise of the particular antivirus engine.
These significant numbers of vulnerabilities demon-
strates not only the complexity of antivirus software,
but also the high risk of vulnerabilities and possible
exploitation when deployed in sensitive environments.

When a vulnerable antivirus engine is deployed in a
mail server environment and is used to scan incoming
mail and attachments for malicious content, the conse-
quences can be dire. While in a host-based antivirus
scenario, exploitation commonly requires user inter-
action in order for the antivirus to attempt to analyze a
maliciously crafted file, a vulnerability in an antivirus
engine deployed at a mail server can be triggered au-
tomatically by a rogue email from any sender with a
malformed attachment. In essence, a vulnerability in
the antivirus engine which was previously only locally
exploitable in a host-based scenario is now remotely
exploitable by any attacker who can send mail to the
mail server. Even when the backend antivirus engine
is run at a lower privilege level (e.g., ClamAV’s clamd
is commonly run as an unprivileged user), an attacker
who is able to compromise the integrity of the antivirus
process will still be able to access the contents of all
the incoming email which is arguably the single most
valuable asset of the mail server.

 Attacker

Mail Server

AV Engine

exploit
email

Step 2: AV Exploitation Attack

 Attacker

Mail Server

AV Engineemail
data

legit
email

Step 3: Post-Attack Email Monitoring

 Attacker

Mail Server

AV Engine

probe
email

Step 1: AV Engine Probing

probe
result

Figure 2. Example scenario of how an at-
tacker could probe a target mail server, iden-
tify and exploit the its antivirus engine, and
then monitor its emails.

3 Mail Server Information Exposure

3.1 Perspective of an Attacker

When performing a targeted attack or penetration
test, it is important for an attacker to gain a foothold
into the network through a high-value, low-risk target
that will enable further compromises and intelligence
gathering with little chance of detection. One type of
target that satisfies these goals of the attacker is the tar-
get network’s mail server. A compromised mail server
can provide a huge amount of information throughout
the entirety of an attack or penetration test due to the
value of the email which it processes. However, mod-
ern mail transfer agents (MTAs) are been hardened
against attack and popular MTAs such as Postfix and
Sendmail have not suffered code execution vulnerabil-
ities in several years.

Therefore, instead of targeting the MTA itself, an

3

attacker can target the antivirus engine that the MTA
employs. However, from a blackbox perspective, the
attacker may not know what particular vendor/version
of antivirus software the mail server uses. If the at-
tacker blasts the mail server with a voluminous amount
of malformed attachments containing his exploit for
every possible vendor and version combination of an-
tivirus software, he exposes himself to a significantly
higher risk of detection and may be prematurely dis-
closing sensitive parts of his malicious payload to
any savvy administrators (e.g., 0-day exploits, cus-
tom backdoor routines, IP address of next stage down-
loader). In addition, if the attacker attempts to exploit
a particular version that does not match the deployed
antivirus software, the malformed attachment may ac-
tually crash the antivirus engine instead of exploiting
it, resulting in near-certain detection. Therefore, be-
ing able to determine the vendor or version of the mail
server’s antivirus software in a low-risk manner repre-
sents a very advantageous ability for the attacker.

3.2 Remote Identification Techniques

Mail servers and their associated antivirus engines
often provide both explicit and implicit feedback that
convey information to its users regarding aspects of
its operation (e.g., sending an error messages back to
the sender when a malicious attachment is detected).
While this information can be useful to legitimate
users during normal operation, it may be abused by a
malicious party. An attacker may be able to remotely
probe or otherwise influence the mail server and its
antivirus engine into a state that exposes information
about the vendor or version of the antivirus engine.

We introduce three techniques that could be used
by an attacker to remotely glean information in a low-
risk manner from a target mail server and identify the
antivirus engine employed:

1. Message Bouncing: Most mail servers return a
bounced message to the sender when delivery
fails to a invalid recipient mailbox(SMTP error
550). Headers and other information contained
within this bounced message may reveal informa-
tion about the antivirus software used by the mail
server. Bounced messages may also reveal infor-
mation about the mail server or its operating sys-
tem platform that can be used to narrow the list

of candidate antivirus engines. Since the attacker
can send a message to a random recipient in order
to generate a bounce and administrators do not
usually monitor bounced messages, the attacker
can maintain a high level of stealth by using this
technique.

2. Detection Probing: If the antivirus engine of a
mail server detects that an email has malicious
content or attachments, it may send a notification
message back to the sender. Similar to the first
technique, this response may contain sensitive in-
formation exposing the vendor or version of the
antivirus engine. As this technique requires that
the attacker send an attachment that triggers the
detection capabilities of the antivirus engine, it is
less stealthy than the first technique but may re-
sult in a more detailed exposure of information
from the mail server.

3. Iterative Refinement: If the attacker has of-
fline access to a group of antivirus engines, he
may be able to craft sample files that trigger
only one particular engine. Combined with a
source of feedback (e.g., rejected connection,
auto-response/vacation message) from the mail
server to determine when an attachment is ac-
cepted or rejected, the attacker may iterate over
his sample set to determine the particular an-
tivirus engine in use by the mail server. For ex-
ample, if an attacker sends a file attachment that
he knows is only detected by the Symantec an-
tivirus engine and that attachment is rejected, he
can assess with some degree of confidence that
the mail server employs Symantec. Additional
samples only detected by Symantec can be sent
to increase confidence in the result. Once a par-
ticular vendor is identified, the attacker could re-
verse engineer signatures updates for that vendor
to construct further probing samples and refine to
a specific version of the antivirus engine. While
this technique is the least stealthy of the three, it
can be used as a last resort if the other techniques
prove ineffective against the attacker’s target.

4

4 Experimentation and Evaluation

To evaluate the effectiveness of the presented tech-
niques for remotely identifying the antivirus software
deployed at a mail server, we performed three dis-
tinct experiments. In addition, we performed a simple
survey to gain further insight into the impact of mail
server antivirus vulnerabilities.

4.1 Message Bouncing

The first technique investigates the exposure of in-
formation from messages bounced back to the sender
when an invalid mailbox recipient is specified. There-
fore, collecting a sample set of bounced messages is a
simple task. We addressed test emails to invalid mail-
boxes for a large number of educational institutions
and collected the bounced responses. In total, we col-
lected 483 bounced messages and manually inspected
the headers and content of each one to determine if any
significant information was exposed.

Hostnames of the mail server involved in the de-
livery of the bounced messages revealed a surprising
amount of information about the protection software
used. For example, 36 out of the 483 bounces (7.4%)
have the string “barracuda” in the hostname of a server
involved in the mail delivery (e.g., barracuda.x.edu),
corresponding to the popular email appliance com-
pany Barracuda Networks [2]. Similarly, 14 out of
483 (2.9%) have the string “ironport”, corresponding
to IronPort Systems [4]. Identifying over 10% of the
mail servers simply by their hostname in the bounced
messages represents a significant exposure.

The email headers and contents of the bounced mes-
sages can reveal even more detailed information about
the antivirus vendor and version. The most common
occurrences of exposed vendor information included
Barracuda, IronPort, ProofPoint, Trend Micro IMSS,
and MailScanner. These five vendors account for ex-
posed information in 137 of the 483 bounced emails
(28.4%). Examples of some of the leaked vendor and
version information is listed in Table 1.

As the message bouncing technique may reveal a
significant amount of detail about the antivirus engine,
while maintaining a low risk of detection, it may be
very attractive to attackers as an initial reconnaissance
vector. However, if the bounced message does not con-

tain enough information to identify the antivirus en-
gine, the attacker may attempt the next technique.

4.2 Detection Probing

In order to evaluate how much information is ex-
posed using the detection probing technique, we per-
formed an active measurement experiment across a
representative sample set of mail servers. However,
to elicit the desired response messages, it is necessary
to trigger the detection of the antivirus engine used by
the mail server. Sending a real piece of malware to
a number of mail servers across the Internet in hopes
of triggering antivirus engines would certainly be an
unsafe experimentation methodology.

Fortunately, there exists a test file called the EICAR
Standard Anti-Virus Test File [3], which was designed
to allow administrators to test whether their antivirus
software is operating properly in a safe manner. The
EICAR test file is a 68-byte ASCII string which is ac-
tually a valid COM executable. The full contents of
the EICAR test file is as follows:

X5O!P%@AP[4\PZX54(Pˆ)7CC)7}$EICAR-
STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

The majority of vendors have included a signa-
ture for the EICAR test file in their antivirus products
which is usually classified along the lines of “Eicar-
Test-Signature”. Therefore, we can send the EICAR
test file as an attachment for the detection probing
technique to elicit feedback in a safe manner from the
mail server antivirus software without having to send
a real malware sample.

To gain a representative sample of mail server re-
sponses, we sent a probe message with the EICAR
test file attachment to approximately 1500 mail servers
hosted by educational organizations. The recipient of
the message was the “postmaster” alias to minimize
invalid recipient errors as the “postmaster” alias is re-
quired by RFC 2821 [5] for SMTP email. Of the
1500 messages sent, only 1053 were accepted for de-
livery by the destination SMTP servers, 213 of which
resulted in response messages being returned to the
sender. Through manual inspection, 166 of these 213
responses contained information explicitly identifying
the antivirus engine used by the mail server. This rep-

5

Identified Engine Information Exposure
ProofPoint / F-Secure X-Proofpoint-Virus: Found Infected

X-Proofpoint-Virus-Version: vendor=fsecure
engine=1.12.7160:2.4.4,1.2.40,4.0.166

IronPort / Sophos X-IronPort-Anti-Spam-Filtered: true
X-IronPort-AV: E=Sophos;i=“4.27,718,1204520400”;
v=“EICAR-AV-Test’3’rd”; d=“txt’?com’?scan’208”;a=“929062”

Trend Micro X-TM-AS-Product-Ver: CSC-0-5.5.1026-15998
X-TM-AS-Result: No–10.22-4.50-31-1
Eicar test file was detected in the file (eicar.com)

McAfee The WebShield(R) e500 Appliance discovered a virus in
this file. The file was not cleaned and has been removed.

Barracuda / ClamAV X-Barracuda-Virus-Scanned: by Barracuda Spam Firewall at x.edu

Table 1. A few examples of the information exposed through the bounced messages and detection
probing techniques that can be used to identify the vendor or version of an antivirus engine.

resents an exposure rate of 77.9% of the response mes-
sages and 15.8% of the total delivered messages.

The information contained in the message re-
sponses exposed numerous protection vendors in-
cluding Antigen, Barracuda (ClamAV), Border-
Ware, ClamAV, IronPort (Sophos), Kaspersky, Mi-
rapoint, McAfee, MailFoundry, MailScanner (Cla-
mAV), ProofPoint (McAfee, F-Secure), PureMessage
(Sophos), SmoothZap (ClamAV), Sophos, SonicWall
(McAfee, Kaspersky), Symantec, Trend Micro, and
Untangle (ClamAV, Kaspersky). By far, the most fre-
quent response was generated from Barracuda’s email
filtering appliance. Many of these mail security ven-
dors actually employ antivirus engines from the top
vendors in the backend (e.g., Barracuda’s filtering ap-
pliance uses ClamAV), thereby inheriting the large
number of vulnerabilities detailed in Section 2. Sev-
eral examples of the vendor and version information
exposure are detailed in Table 1. The detail of infor-
mation exposed through this detection probing tech-
nique is generally more fine-grained than the message
bouncing technique and could prove very valuable for
an attacker attempting to exploit the antivirus engine.

Many of the mail server that did not send a response
message to the probe email may have not deployed an-
tivirus software, used antivirus that ignores the EICAR
test, or simply routed postmaster messages to a null
mailbox. Due to these limitations, the final result may
be an underestimate of the actual set of affected mail

servers but is the best approximation possible that can
be performed in a safe, non-malicious manner.

4.3 Iterative Refinement

To determine whether the iterative refinement tech-
nique is effective in identifying a particular antivirus
engine, we performed an experiment against a mail
server hosted at the University of Michigan, of which
we had no prior knowledge of its protection software.
The University’s mail server was configured to reject
malicious email content and attachments during the
SMTP conversation with a 554 error, providing an ef-
fective feedback mechanism. While a 554 SMTP er-
ror is a generic ”Transaction failed” message, the error
message returned by the mail server also included a
link to the University’s anti-spam and virus filtering
information page, indicating that a malicious attach-
ment had been blocked.

Using a collection of over 7200 malware sam-
ples from the Arbor Malware Library (AML) [7]
and antivirus engines from ten vendors (Avast, AVG,
BitDefender, ClamAV, F-Prot, F-Secure, Kaspersky,
McAfee, Symantec, and Trend Micro), we were able
to isolate malware samples that were detected by only
one specific antivirus engine. While the selection of
ten antivirus vendors certainly does not represent ev-
ery possible antivirus product ever developed, it cov-
ers the most popular and commonly-deployed vendors.

6

By analyzing the malware dataset with each engine
and correlating the results together, we were able to
identify a substantial number of samples for each en-
gine that were only detected by that engine and no oth-
ers (Avast: 13, AVG: 6, BitDefender: 6, ClamAV: 23,
F-Prot: 6, F-Secure: 8, Kaspersky: 14, McAfee: 4,
Symantec: 8, and Trend Micro: 22).

Armed with these unique samples, we iterated
through each vendor and sent one sample from each
as an attachment to the target mail server. As seen in
Table 2, the attachments that were only detected by
ClamAV, Symantec, Kaspersky, and BitDefender were
accepted for delivery. Besides the obvious security de-
ficiencies of a mail server accepting actual malware
samples, this process reveals that the mail server is
likely not employing any of these four vendors. How-
ever, when we sent the malware sample only detected
by McAfee, it was rejected by the mail server. This
rejection event indicates with high probability that the
mail server employs the McAfee antivirus engine. Ad-
ditional samples only detected by McAfee were sent
to increase the confidence of this result and the con-
clusion was later confirmed as correct by University
administrators.

4.4 Mail Server Antivirus Survey

The last experiment performed was an informal sur-
vey distributed to the security contacts of numerous
organizations which contained three simple questions:

1. Do you employ antivirus software at your mail
server to detect and block malicious email attach-
ments?

2. If so, what antivirus vendor do you employ?

3. When was the last time you checked for security
updates from the vendor to address vulnerabili-
ties within the antivirus software?

The majority of the survey participants indicated
that their organization’s mail server employs the Cla-
mAV antivirus engine. Barracuda’s spam and antivirus
filtering appliance was also very popular, which uses
ClamAV internally. Given that ClamAV has had the
most vulnerabilities of any of the antivirus vendors as
seen in Figure 1 back in Section 2, this result is of

great concern. Also, the fact that the Barracuda ap-
pliance is one of the most verbose responders to the
detection probing technique represents a serious threat
to numerous organizations.

In response to the third question regarding security
updates to the antivirus software itself, a significant
number of survey participants indicated that they fre-
quently update their signatures, rather than specifying
how often they update the engine itself. While some of
the participants may have misinterpreted the question,
the lack of understanding exemplifies how security ad-
ministrators may be unaware of the serious vulnerabil-
ities in their antivirus products and the associated risk
in a mail server environment.

5 Addressing the Threat

The threat of an attacker using leaked information
from a mail server to specifically target a particular
antivirus engine is very real threat that must be ad-
dressed to harden networks against such an attack. In
this section, we explore two approaches to addressing
this threat: one which is a short-term approach to re-
duce the exposure of a mail server; and one to address
the impact of the underlying vulnerabilities within the
antivirus software.

5.1 Reducing Information Leakage

One approach to reducing the threat of an attacker
remotely identifying the antivirus software used by
a mail server is to reduce or eliminate the informa-
tion sent by the mail server. For example, bounced
messages from invalid recipient mailboxes or detected
viruses can be scrubbed clean of identifying informa-
tion. While security by obscurity is not a wise protec-
tion mechanism to solely rely on, it can add an addi-
tional hurdle for an attacker to leap. Of course, elim-
inating certain feedback mechanisms from the mail
server is a delicate balance of usability and security.
For example, preventing the third technique from be-
ing effective when the attacker possesses a feedback
mechanism such as a user’s automated vacation mes-
sage may be more difficult and require additional de-
tection methods and alerting thresholds.

7

AV Engine AML Sample Mail Server Response
ClamAV 3507c29a209d9aaf49dbd1167d633aeb sent (250 (4866BC9D.AC670.1261): Accepted)
Symantec 04fd46c7aec6d9803a819e877e42b504 sent (250 (4865BA6A.AA080.5714): Accepted)
Kaspersky 841adece7e5317e665aca9cce308fabb sent (250 (4865BA8E.13514.12023): Accepted)

BitDefender 78bcd78b13ccf37554796cfb100becc2 sent (250 (4866BC33.81961.19326): Accepted)
McAfee 1f7beae151277f63dbe6a89be9ebc96e bounced (554 Transaction failed)

Table 2. Responses from the University of Michigan’s mail server when utilizing iterative refinement.
The AML sample only detected by McAfee is rejected, confirming McAfee as the deployed antivirus.

5.2 Isolation Mechanisms

While reducing the amount of information exposed
by a mail server and its accompanying antivirus en-
gine is a significant improvement, it does not address
the underlying problem of antivirus vulnerabilities. On
the other hand, while it would be optimal to deploy
antivirus software which is free of security vulnerabil-
ities, it is unrealistic to assume that a software product
of such complexity could achieve that goal. Therefore,
a desirable goal would be to mitigate the impact of the
vulnerabilities present in the antivirus engines.

The impact of running a vulnerable antivirus en-
gine within a mail server can be significantly reduced
or eliminated by introducing a layer of isolation be-
tween the antivirus engine and the mail server. The
use of isolation to mitigate the vulnerabilities of an-
tivirus software has been explored in previous work.
In [9], a mail server frontend (via a milter plugin) is
used to transfer mail attachments to a network service
for analysis as opposed to analyzing files on the mail
server itself. Virtualization is employed to isolate the
vulnerable antivirus engines from the mail server and
the rest of the system. If an antivirus engine is suc-
cessfully exploited, the virtualized container hosting
that antivirus engine could simply be disposed of and
reverted to a clean snapshot. As [9] provides a con-
trolled environment for the backend engines, detection
of the exploitation of an antivirus engine would be a
feasible procedure (e.g., attempting to spawn an un-
recognized process, initiating socket communications
with external parties to leak email data, or even execut-
ing unusual code paths). Providing this layer of isola-
tion strikes a balance between the simple approach of
eliminating the exposure of information from the mail
server and the difficult problem of eliminating all vul-
nerabilities within existing antivirus software.

6 Conclusion

Vulnerabilities within the antivirus software of mail
servers represent a serious threat vector that has not re-
ceived a sufficient amount of attention or exploration.
Towards understanding how a sophisticated attacker
could perform such an attack while minimizing detec-
tion risk, we introduced and evaluated three informa-
tion exposure techniques that may allow a malicious
party to remotely identify an antivirus engine deployed
by a mail server. To address this threat vector, we dis-
cussed potential solutions that may reduce the expo-
sure of information or eliminate the impact of vulner-
abilities in the underlying antivirus software.

References

[1] Adobe Systems Incorporated. Apsb08-15 adobe acrobat vul-
nerability. http://www.adobe.com/support/security/
bulletins/apsb08-15.html, 2008.

[2] Barracuda Networks. Barracuda spam firewall. http://www.
barracudanetworks.com, 2008.

[3] EICAR e.V. Eicar antivirus test file. http://www.eicar.
org/anti_virus_test_file.htm, 2006.

[4] IronPort Systems. Ironport email security appliances.
http://www.ironport.com/products/email_security_
appliances.html, 2008.

[5] J. Klensin. Rfc 2821: Simple mail transfer protocol. http:
//www.ietf.org/rfc/rfc2821.txt, 2001.

[6] Microsoft Corporation. Microsoft security bulletin ms08-
026. http://www.microsoft.com/technet/security/
bulletin/MS08-026.mspx, 2008.

[7] Arbor Networks. Arbor malware library (AML). http://
www.arbornetworks.com, 2007.

[8] NIST/DHS/US-CERT. National vulnerability database.
http://nvd.nist.gov/, 2007.

[9] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav:
N-version antivirus in the network cloud. In Proceedings of
the 17th USENIX Security Symposium, July 2008.

8

