CloudAV
N-Version Antivirus in the Network Cloud

Jon Oberheide, Evan Cooke, Farnam Jahanian
University of Michigan

July 30, 2008

USENIX Security '08
Roadmap

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up
Antivirus is the predominant method of detecting and stopping malicious software

- Widely deployed
- Last line of defense
- Over $10 billion market in 2008
- Over 50% of security software revenue
Antivirus Limitations

• Detection Coverage
 • Dismal detection rates
 • Slow response to emerging threats
 • Disjoint detection/collection methods

• AV Software Vulnerabilities
 • Complexity → security risk
 • Local and remote exploits
 • Inherently high privileges

<table>
<thead>
<tr>
<th>Antivirus</th>
<th>Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avast</td>
<td>45.8%</td>
</tr>
<tr>
<td>ClamAV</td>
<td>48.8%</td>
</tr>
<tr>
<td>F-Prot</td>
<td>49.6%</td>
</tr>
<tr>
<td>F-Secure</td>
<td>74.4%</td>
</tr>
<tr>
<td>Kaspersky</td>
<td>84.0%</td>
</tr>
<tr>
<td>McAfee</td>
<td>56.7%</td>
</tr>
<tr>
<td>Symantec</td>
<td>38.8%</td>
</tr>
<tr>
<td>Trend Micro</td>
<td>74.6%</td>
</tr>
</tbody>
</table>

Arbor Malware Library (AML)
Oct '07 - Nov '07
Detection Degradation

Antivirus detection coverage degrades significantly as threats approach 0-day.
Antivirus software is listed as one of the top 20 threats of 2007 according to SANS.
Addressing the Limitations

- Detection Coverage
 - Dismal detection rates
 - Disjoint detection/collection methods

- AV Software Vulnerabilities
 - Complexity leads to security risk
 - Inherently high privileges

Leverage detection capabilities from multiple vendors
Need isolation between end host and analysis engines
Roadmap

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up
AV as a In-Cloud Network Service

- By providing antivirus as an in-cloud service:
 - Analyze files using **multiple detection engines** in parallel
 - Collect **forensic data** for post-infection assessment
 - **Retrospectively detect** previously infected hosts
 - **Simplify host software** for wide deployability
 - Centralize **management** and policy enforcement
Deployment Model

- Network service can be deployed inside an organization or by an upstream ISP
Architecture

- **Lightweight host agent** runs on desktops, laptops, and other devices

- **Network service** hosts the backend file analysis engines and fields requests from the host agent.

- **Archival and forensics service** stores information on file analysis results and provides a query and alerting interface
Lightweight host agent:
- Access to each file is trapped and diverted to a handling routing
- Generate a unique identifier for the file (e.g. cryptographic hash)
- Compare UID to local and remote cache of previously analyzed files; send file to network service if not in either cache
Key insight: separate acquisition of files from detection routines; move complexity off end host

- Small code base → reduced vulnerability footprint
- Isolation from vulnerabilities present in the detection engines
- Easier to port to new operating systems
Simplified Host Agent

Cross Platform

Mobile Devices

Mail Server Frontends

sendmail.org

POSTFIX
Architecture

- **Network service:**
 - Receives incoming analysis requests from host agent
 - File analyzed by collection of engines (N-version protection)
 - Central management of signatures updates and security policies
 - Shared remote cache maintained in network service
N-Version Protection

• N-version programming
 • Multiple, independent implementations for robustness and reliability
 • Observation: independent implementations are unlikely to suffer same failures/bugs

• N-version protection
 • Multiple, independent implementations for the detection of malware
 • Observation: independent vendors have heterogeneous detection routines, malware collection methodologies, and response times
 • Leverage heterogeneity to increase coverage
Archival and Forensics Service:
- Retrospective detection: rescanning of archived files after a signature update; allows detection of previously infected hosts
- Network-wide policy enforcement (for example: block unwanted applications, prevent execution of an email attachment)
- Forensics tracking of file access
Retrospective Detection

- Detect previously unknown threats
- Host-based scenario:
 - Host infected by 0-day threat, antivirus disabled
 - Later: vendor releases new signatures to address threat
 - Result: sig updates not received, host infected indefinitely
- Network service with RD:
 - Host sends 0-day to network service, 0-day evades all detection engines, 0-day archived, host becomes infected.
 - Later: vendor releases new signatures to address threat. Network service rescans archived files, detects threat!
 - Result: Administrator notified of infected host, can quarantine, analyze forensics/behavioral information, disinfect.
Forensics Archive

- Contextual file access info
 - Temporal and causal relations between events
 - Drill down to who/what/where/when of infection
- Detailed runtime behavioral profiles
 - Enhanced what: feedback from behavioral engines
 - Assists in post-infection cleanup and risk assessment
Roadmap

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up
Implementation – Host Agent

- Platforms:
 - Windows 2000/XP/Vista, Linux 2.4/2.6, FreeBSD 6
 - Milter frontend interface (Sendmail, Postfix)
 - Nokia Maemo mobile platform

- Win32 host agent
 - Win32 API hooking (jmp insertion, IAT/EAT patching)
 - ~1500 LOC, 60% managed code
 - Co-exists peacefully with existing AV engines

- Linux/BSD host agent
 - Python, < 300 LOC, LSM syscall hooking
Implementation – Network Service

• Backend analysis engines
 • 10 antivirus engines:
 • Avast, AVG, BitDefender, ClamAV, F-Prot, F-Secure, Kaspersky, McAfee, Symantec, Trend Micro
 • 2 behavioral engines
 • Norman Sandbox, CWSandbox

• Hosted in Xen VM containers
 • 9 WinXP HVM, 3 Linux domU paravirt
 • Isolation/Recovery: in case of engine compromise
 • Scalability: dynamically spin up/down instances
Management Interfaces

Web interface:
- Forensics Drilldown
- Policy Enforcement
- Flexible Alerting
- Report Generation

VM Monitoring:
- Real-time System Status
- Xen VM Management
- Visualization Eye-Candy!
Evaluation

- Malware Dataset
 - Arbor Malware Library (AML)
 - 7220 malware samples
 - Collected over a year period

- Deployment Results
 - Production deployment on campus network
 - Win32 host agent in computing labs
 - Over 6 months of data
N-Version Protection

- Single engine from 82% to 52%
- Ten engines from 98% to 88%
- For zero-day 88% vs. 52%
- Diminishing marginal utility

Detection rates are calculated by taking the average rate across all combinations of N engines.
Vulnerability Window

- AML data set + archive of McAfee DAT signature files with 1-week granularity
- ~30% samples already detected
- ~30% samples never detected
- ~70% eventually detected
- Average time between observation and detection is 48 days.

Large window of vulnerability: retrospective detection is essential to discover previously infected hosts
Caching and Performance

- 615K execution events
- 1300 unique executables
- 99.8% remote cache hit rate: files rarely need to be transferred to network service for analysis

99.8% remote cache hit rate: files rarely need to be transferred to network service for analysis
Bandwidth and Latency

- **Boot Process**: 10 processes
 - Warm local: none
 - Warm remote: 8.7 kb

- **Login process**: 52 processes
 - Warm local: none
 - Warm remote: 46.2 kb

- **Comparison: Active Directory (LDAP)**
 - Boot: 171 kb
 - Login: 270 kb

- **Average binary analysis time**: 1.3 seconds
Roadmap

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up
Discussion

- Disconnected operation
 - Local caching, policy decision
- False positives
 - Confidence, engine thresholds, management
- Detection engine licensing
 - Price/perf, free engines, lock-in
- Sources of malicious code
 - DLL results, file types configurable
- Context and environment
 - Can execute candidate files in VM
- Privacy implications
 - Tunable collection and display
Wrap-up

An in-cloud service is an intuitive and effective approach for malware detection.

Adhoc solution → In-Cloud solution

- **In-Cloud advantages**
 - Global visibility (inherent)
 - Centralized management (inherent)
 - Application-specific advantages

- **Past in-cloud services**
 - Email filtering
 - DDoS mitigation
 - Phishing

- **Future in-cloud services**
 - HIDS
 - Anomaly detection
 - ???
Questions?

- Contact information
 - Jon Oberheide
 - University of Michigan
 - jonojono@umich.edu
 - http://www.eecs.umich.edu/fjgroup/