CloudAV

N-Version Antivirus in the Network Cloud

Jon Oberheide, Evan Cooke, Farnam Jahanian University of Michigan

July 30, 2008

USENIX Security '08

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up

Antivirus is the predominant method of detecting and stopping malicious software

- Widely deployed
- Last line of defense
- Over \$10 billion market in 2008
- Over 50% of security software revenue

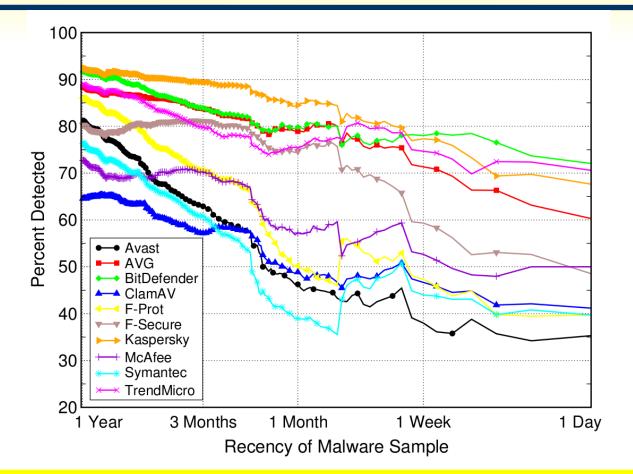
Antivirus Limitations

Detection Coverage

- Dismal detection rates
- Slow response to emerging threats
- Disjoint detection/collection methods

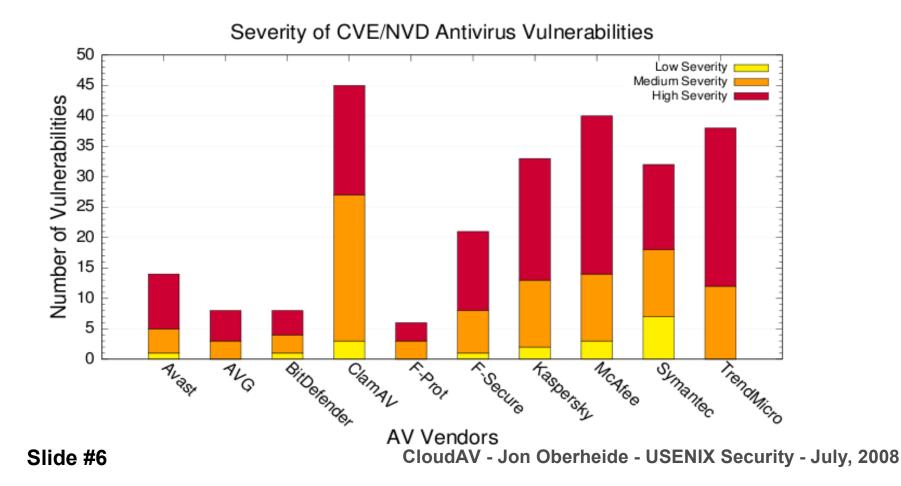
· AV Software Vulnerabilities

- · Complexity \rightarrow security risk
- · Local and remote exploits
- · Inherently high privileges


Antivirus	Detected
Avast	45.8%
ClamAV	48.8%
F-Prot	49.6%
F-Secure	74.4%
Kaspersky	84.0%
McAfee	56.7%
Symantec	38.8%
Trend Micro	74.6%

Arbor Malware Library (AML) Oct '07- Nov '07

Detection Degradation



Antivirus detection coverage degrades significantly as threats approach 0-day

Antivirus software is listed as one of the top 20 threats of 2007 according to SANS

Addressing the Limitations

M

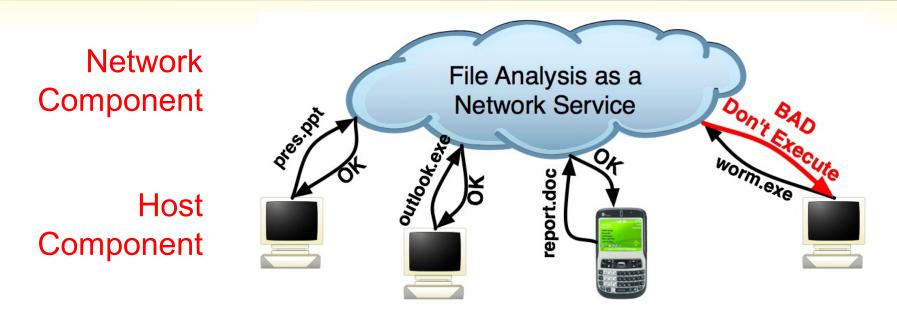
- Detection Coverage
 - Dismal detection rates

Leverage detection capabilities from multiple vendors

- Disjoint detection/collection methods
- AV Software Vulnerabilities
 - Complexity leads to security risk

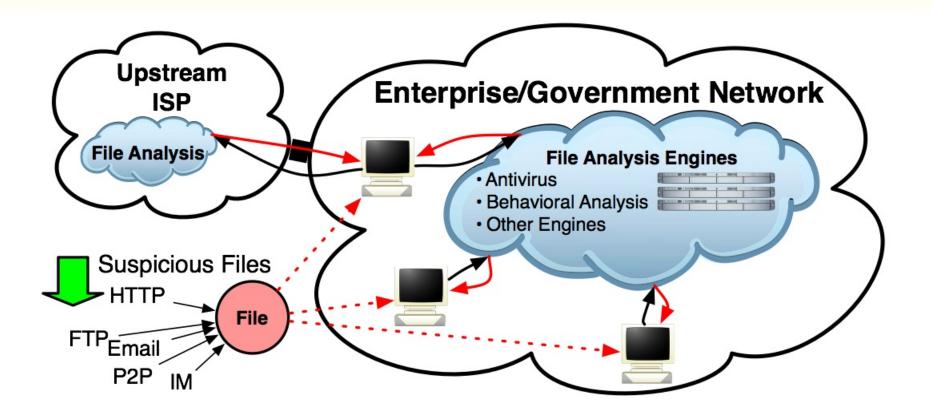
Need isolation between end host and analysis engines

Innerently high privileges

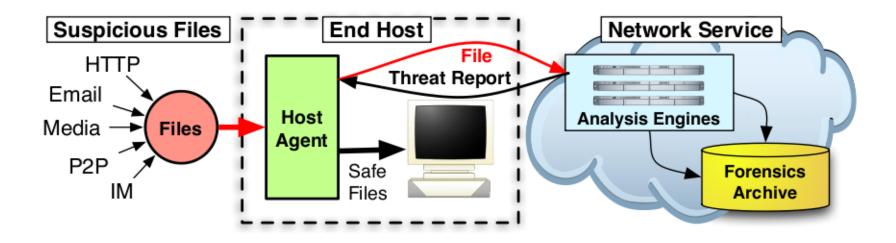


- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up

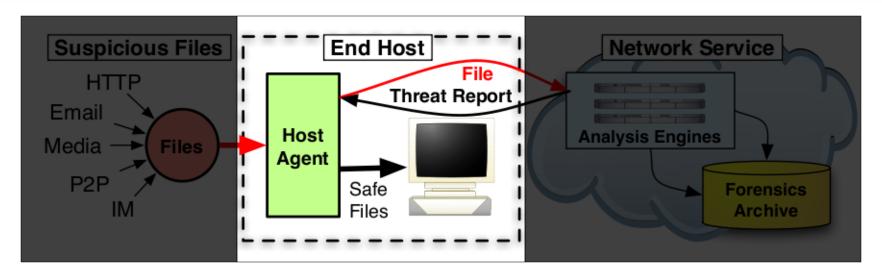
AV as a In-Cloud Network Service



- By providing antivirus as an in-cloud service:
 - · Analyze files using **multiple detection engines** in parallel
 - · Collect forensic data for post-infection assessment
 - · Retrospectively detect previously infected hosts
 - Simplify host software for wide deployability
 - · Centralize **management** and policy enforcement


Deployment Model

 Network service can be deployed inside an organization or by an upstream ISP

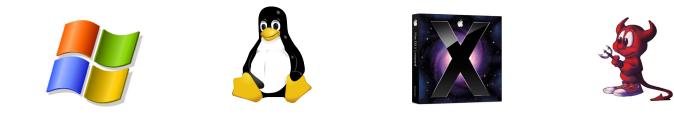


- Lightweight host agent runs on desktops, laptops, and other devices
- **Network service** hosts the backend file analysis engines and fields requests from the host agent.
- Archival and forensics service stores information on file analysis results and provides a query and alerting interface

Architecture

• Lightweight host agent:

- Access to each file is trapped and diverted to a handling routing
- Generate a unique identifier for the file (eg. cryptographic hash)
- Compare UID to local and remote cache of previously analyzed files; send file to network service if not in either cache


Key insight: separate acquisition of files from detection routines; move complexity off end host

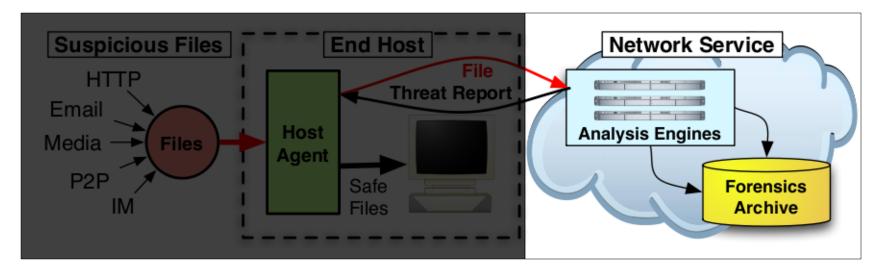
- Small code base \rightarrow reduced vulnerability footprint
- Isolation from vulnerabilities present in the detection engines
- Easier to port to new operating systems

Simplified Host Agent

Cross Platform

Mobile Devices

Mail Server Frontends

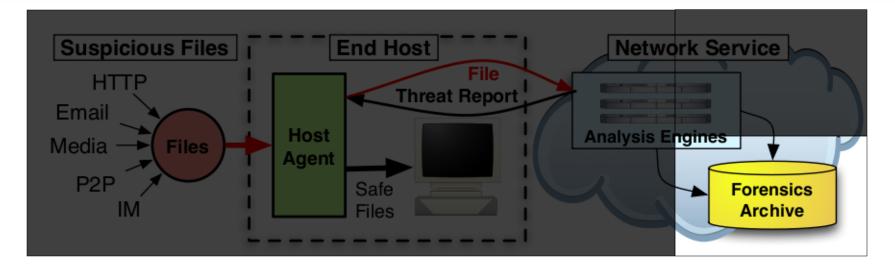


Slide #14

CloudAV - Jon Oberheide - USENIX Security - July, 2008

Architecture

• Network service:


- Receives incoming analysis requests from host agent
- File analyzed by collection of engines (N-version protection)
- Central management of signatures updates and security policies
- Shared remote cache maintained in network service

- N-version programming
 - Multiple, independent implementations for robustness and reliability
 - Observation: independent implementations are unlikely to suffer same failures/bugs
- N-version protection
 - Multiple, independent implementations for the detection of malware
 - Observation: independent vendors have heterogeneous detection routines, malware collection methodologies, and response times
 - Leverage heterogeneity to increase coverage

Architecture

• Archival and Forensics Service:

- Retrospective detection: rescanning of archived files after a signature update; allows detection of previously infected hosts
- Network-wide policy enforcement (for example: block unwanted applications, prevent execution of an email attachment)
- Forensics tracking of file access

- · Detect previously unknown threats
- · Host-based scenario:
 - · Host infected by 0-day threat, antivirus disabled
 - · Later: vendor releases new signatures to address threat
 - · Result: sig updates not received, host infected indefinitely
- Network service with RD:
 - Host sends 0-day to network service, 0-day evades all detection engines, 0-day archived, host becomes infected.
 - Later: vendor releases new signatures to address threat. Network service rescans archived files, detects threat!
 - · Result: Administrator notified of infected host, can quarantine, analyze forensics/behavioral information, disinfect.

Forensics Archive

User: jonojono	SHA-1: cbe8806d63aa09fdb0ff1368e6ca3513f61e13ce
GUID: <u>9c70d951-9eef-4c</u> 2007/12/05Host: <u>cse1695p60.engin.umich.ed</u> 20:10:18 IP: <u>141.213.55.95</u> User: jonojono	Filename: C:\WINDOWS\system32\netstat.exe uParent: C:\WINDOWS\system32\cmd.exe Size: 36.0 KB SHA-1: <u>1519393638939f583a5eaf9921d1cd9b930a0453</u>
GUID: <u>9c70d951-9eef-4c</u> 2007/12/05Host: <u>cse1695p60.engin.umich.ed</u> 20:10:17 IP: <u>141.213.55.95</u> User: jonojono	Filename: C:\Program Files\Mozilla Firefox\firefox.exe Parent: C:\WINDOWS\Explorer.EXE Size: 7.0 MB SHA-1: <u>cbe8806d63aa09fdb0ff1368e6ca3513f61e13ce</u>
GUID: <u>9c70d951-9eef-4c</u> 2007/12/05Host: <u>cse1695p60.engin.umich.ed</u> 20:10:05 IP: <u>141.213.55.95</u> User: jonojono	Size: 54.0 KB SHA-1: <u>2b804d6e9263952dabb47f951b7aa7cb753583fe</u>
GUID: 9c70d951_9eef_4c	Filename: C:\WINDOWS\system32\telnet eve

- Contextual file access info
 - Temporal and causal relations between events
 - Drill down to who/what/where/when of infection
- Detailed runtime behavioral profiles
 - Enhanced *what*: feedback from behavioral engines
 - Assists in post-infection cleanup and risk assessment

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up

Implementation – Host Agent

Platforms:

- Windows 2000/XP/Vista, Linux 2.4/2.6, FreeBSD 6
- Milter frontend interface (Sendmail, Postfix)
- Nokia Maemo mobile platform
- Win32 host agent
 - Win32 API hooking (jmp insertion, IAT/EAT patching)
 - ~1500 LOC, 60% managed code
 - $\cdot\,$ Co-exists peacefully with existing AV engines
- Linux/BSD host agent
 - Python, < 300 LOC, LSM syscall hooking

- Backend analysis engines
 - 10 antivirus engines:
 - Avast, AVG, BitDefender, ClamAV, F-Prot, F-Secure, Kaspersky, McAfee, Symantec, Trend Micro
 - · 2 behavioral engines
 - Norman Sandbox, CWSandbox
- Hosted in Xen VM containers
 - 9 WinXP HVM, 3 Linux domU paravirt
 - Isolation/Recovery: in case of engine compromise
 - Scalability: dynamically spin up/down instances

Management Interfaces

Web interface:

- Forensics Drilldown
- Policy Enforcement
- Flexible Alerting
- Report Generation

CloudExec

Dashboard

ANALYSIS

Presets: Last 2 Years V Executions per minute: Unique executables per minute: 0.30 50 0.25 40 0.20 0.15 0.10 0.05 lan 01 08 Recent Clients (Total: 66 hosts in 2 group(s)) Top Files: GUID HOST VERSION LAST HEARD COUNT 86331 net er

ADMIN

ALERTS

f5e4f427aed74f3a7c951704b33e65ffb01098

	0	1822d70e-5d8c-45	cse1695p45.eng	0.3.2	35 seconds ago	73535	verclsid.ex	te
	ě	f1a2d715-5d56-4d	cae1695n36_eng	0.3.2	1 minute ago	57179	cnd. exe	
	ě	Sfaef8c0-a985-4e		0.3.2	1 minute ago	31007	net1.exe	
	~	8ecdc35d-d919-4b		0.3.2	1 minute ago	29557	rund1132.ez	te
	0				-	29523	regedit.exe	
	•	02d46026-cb66-4d		0.3.2	1 minute ago	18193	reqsvr32.ex	e
	Θ	283d985b-4736-45	<u>loadtestp09.dc</u>	0.3.1	1 minute ago	15568	TINTSETP. EX	Ξ
	Θ	7a7c353e-c07f-42	cse1695p10.eng	0.3.2	1 minute ago	15504	firefox.exe	
ļ	mor	re				more		
	Su	spicious Files:				Recent Alert	:s:	
		SH	A1		RESULTS	TI	IME	GUID
	4a0	567320ba3c74e2b92d	:2429f30725a8577b	2ac 🖌 🗖 🏑 🖉		/ Sat Dec 22 (07:38:08 2007	1fafbacb-4982-48
	112	ae7843571b8829611	25216215604759060	E02 / C		Fri Dec 21 (02:03:13 2007	02d46026-cb66-4d
	112	057043371000230112		<u>205</u> a A a a		Nod Doo 10 f	00.01.10 0007	7-7-252076 40

Wed Dec 19 22:31:18 2007

lan 01 08

7a7c353e-c07f-42

SIZE 41.0 KB

28.0 KB

379.0 KE

122.0 KB 32.0 KB 143.0 KB 11.0 KB 444.0 KB 7.0 MB

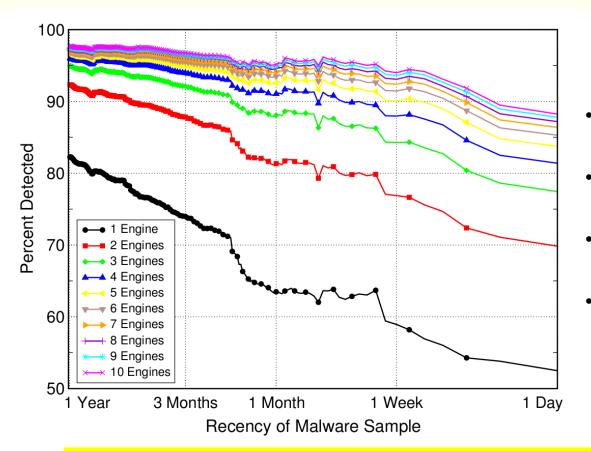
FILENAM calc.exe calc.exe

calc.exe

VM Monitoring:

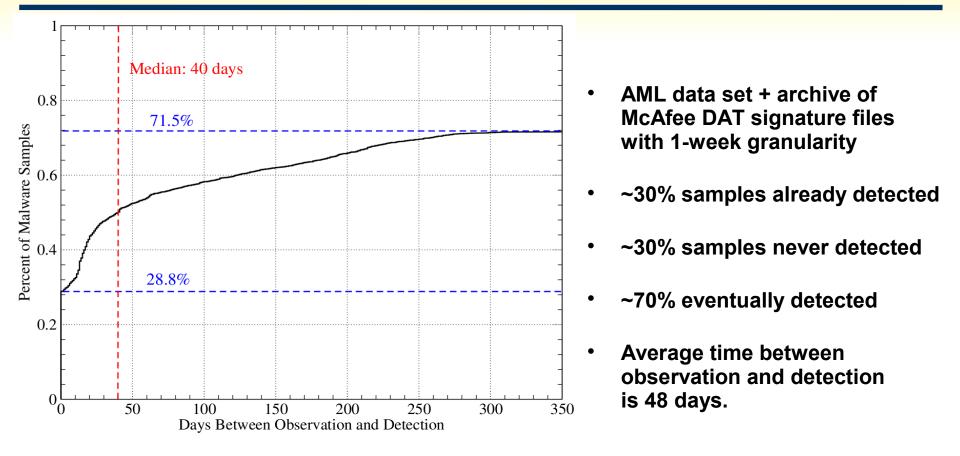
- Real-time System Status
- Xen VM Management
- Visualization Eye-Candy!

Slide #23


CloudAV - Jon Oberheide - USENIX Security - July, 2008

- Malware Dataset
 - Arbor Malware Library (AML)
 - 7220 malware samples
 - Collected over a year period
- Deployment Results
 - Production deployment on campus network
 - Win32 host agent in computing labs
 - Over 6 months of data

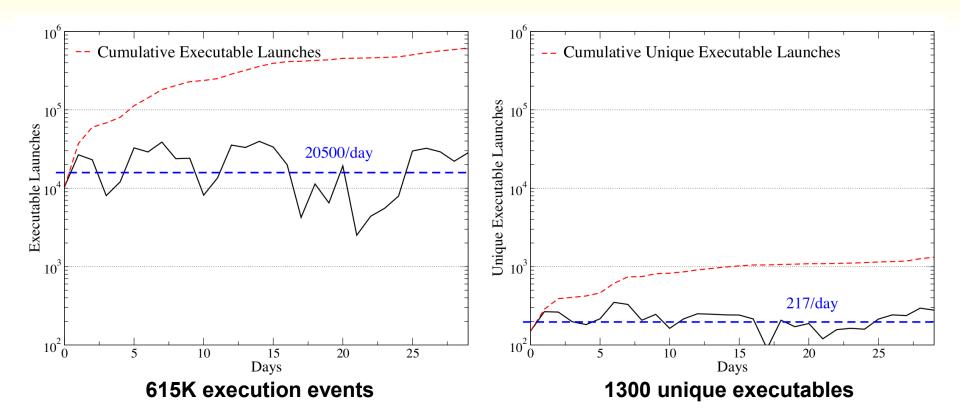
N-Version Protection



- Single engine from 82% to 52%
- Ten engines from 98% to 88%
- For zero-day 88% vs. 52%
- Diminishing marginal utility

Detection rates are calculated by taking the average rate across all combinations of N engines.

Vulnerability Window



Large window of vulnerability: retrospective detection is essential to discover previously infected hosts

Caching and Performance

99.8% remote cache hit rate: files rarely need to be transferred to network service for analysis

Slide #27

CloudAV - Jon Oberheide - USENIX Security - July, 2008

Bandwidth and Latency

- Boot Process: 10 processes
 - Warm local: none
 - Warm remote: 8.7 kb
- Login process: 52 processes
 - Warm local: none
 - Warm remote: 46.2 kb
- Comparison: Active Directory (LDAP)
 - Boot: 171 kb
 - Login: 270 kb
- Average binary analysis time:
 - 1.3 seconds

- Motivation and Limitations of Antivirus
- AV as an In-Cloud Network Service
- Implementation and Evaluation
- Discussion and Wrap-up

Discussion

- · Disconnected operation
 - · Local caching, policy decision
- False positives
 - · Confidence, engine thresholds, management
- · Detection engine licensing
 - · Price/perf, free engines, lock-in
- · Sources of malicious code
 - · DLL results, file types configurable
- · Context and environment
 - $\cdot\,$ Can execute candidate files in VM
- Privacy implications
 - Tunable collection and display

Threshold	False Positives	Detection
1	12	97.7%
2	5	96.3%
3	2	95.2%
4	0	93.9%

AV Vendor	1 Week
Avast	+24.6%
AVG	+8.7%
BitDefender	+3.1%
ClamAV	+0.0%
F-Prot	+12.6%
F-Secure	+15.0%
Kaspersky	+2.3%
McAfee	+14.2%
Symantec	+20.6%
Trend Micro	+12.6%

An in-cloud service is an intuitive and effective approach for malware detection.

Adhoc solution \rightarrow In-Cloud solution

- In-Cloud advantages
 - Global visibility (inherent)
 - Centralized management (inherent)
 - Application-specific advantages
- Past in-cloud services · Future in-cloud services
 - Email filtering
 - DDoS mitigation
 - Phishing

- · HIDS
- Anomaly detection
- ???

Questions?

- Contact information
 - · Jon Oberheide
 - University of Michigan
 - jonojono@umich.edu
 - http://www.eecs.umich.edu/fjgroup/